Corpus based evaluation of stemmers

Istvan Endrédy

Pazmany Péter Catholic University, Faculty of Information Technology and Bionics
MTA-PPKE Hungarian Language Technology Research Group
50/a Préater Street, 1083 Budapest, Hungary
endredy.istvan @itk.ppke.hu

Abstract
There are many available stemmer modules, and the typical questions are usually: which one should be used, which will help our system
and what is its numerical benefit? This article is based on the idea that any corpora with lemmas can be used for stemmer evaluation, not
only for lemma quality measurement but for information retrieval quality as well. The sentences of the corpus act as documents (hit items
of the retrieval), and its words are the testing queries. This article describes this evaluation method, and gives an up-to-date overview
about 10 stemmers for 3 languages with different levels of inflectional morphology. An open source, language independent python tool
and a Lucene based stemmer evaluator in java are also provided which can be used for evaluating further languages and stemmers.

1. Introduction

Information retrieval (IR) systems have a common crit-
ical point. It is when the root form of an inflected word
form is determined. This is called stemming. There are
two types of the common base word form: lemma or stem.
The lemma is the base or dictionary form of a word, which
is the grammatically correct, morphological root of the
word. The stem, however, is a common root form of a
word, which is made usually by cutting typical endings
from the end of the word. The stem need not be a full word.
For instance, the word form spies has the lemma spy and its
stem might be just sp. Stemmers are thus algorithms that
remove certain endings from word forms. Lemmatizers,
however, are special stemmers that produce the dictionary
form of a word. Lemmatizers are able to deal with irregu-
lar word forms, they perform dictionary and morphological
operations on the input. They usually use more resources
than stemmers. Therefore, every lemmatizer is a high qual-
ity and more resource-intensive stemmer.

The advantage of the lemmatizers is that they exactly
know the words, and they have good precision on known
words. But they usually can not handle unknown words.
On the contrary, there are no unknown words for al-
gorithmic stemmers. They are much simpler, smaller and
usually faster than lemmatizers, and for many applications
their results are good enough. For instance, the final res-
ult of an IR does not require to define exact lemma, it is
enough to assign the same stem to the related word forms.

One of the famous algorithmic stemmers is the Porter
stemmer for English (Porter, 1980). This logic was expan-
ded, and a programming language, Snowball was created
for defining stemming algorithms (Porter and Boulton,
2001).

Stemming has strong impact not only on the precision
and recall of searching, but it can also reduce the size of
the index. In the case of agglutinative languages (such
as Finnish or Hungarian) where a single word might have
thousands of word forms, stemming is essential.

234

2. Related work

Stemmers can be evaluated in several ways. First, their
impact on IR performance is measurable by test collec-
tions. The earlier stemmer evaluations (Hull, 1996; Tordai
and De Rijke, 2006; Haldcsy and Trén, 2007) were based
on pre-defined queries and their expected document sets.
These sets were called experimental collections. A few
hundreds of queries were constructed by hand and evalu-
ated on thousands of documents for relevance with respect
to these queries. This dataset had to be made very care-
fully: the selection had great impact on the final results.
Stemmers were evaluated against this dataset. Ranking
was also the part of the evaluation.

These evaluations might show the usefulness of a stem-
mer, but a stemmer developer does not get feedback about
the typical errors of the module. Thus error metrics (Paice,
1994) were defined which might give an insight into the
comparison of stemmers and can also give detailed in-
formation about errors. There are basically two types of
stemming error: overstemming and understemming. Over-
stemming index (OI) shows how many times a stemmer
wrongly cuts too many letters from a word form. The
higher is the OI, the more unrelated words are connected
to the same stem in an IR, and precision is decreased. Un-
derstemming index (UI) counts how many times a stem-
mer misses to remove a suffix. This type of error results
in the separation of related word forms. In an IR it causes
lower recall. The ideal case is when OI and UI are both
zero. The rate of OI / UI means the weight or strength of
a stemmer: a light stemmer strips only fewer affixes from
words, a heavy one eats them with greater appetite. This
weight does not represent the quality of a stemmer, it only
characterizes its suffix stripping mode. Another rate was
defined to compare stemmers: error rate relative to trun-
cation (ERRT) which shows the distance of the (UI, OI)
series from the ideal one.

There are several available open source IR systems, for
instance Lucene (Hatcher et al., 2004) and systems based
on it: Apache Solr (Smiley et al., 2015), Elasticsearch
(Gormley and Tong, 2015). They are shipped with more
stemmers. However, it is not easy to decide which stem-

mer to choose for a given system. Previous evaluations are
older than these systems, and there was no available eval-
uation about them.

This article would like to give an up-to-date overview
about stemmers, and also to provide a simple method and
a language-independent python and java tool !, which can
be used to compare and evaluate any stemmers for further
languages.

3. Metrics on the direct output of the
stemmers

Stemmers are evaluated by six metrics. First, a corpus
with lemmas is needed, whose lemmas will be the gold
standard. Second, each word of the corpus is stemmed
with various stemming modules. Their results can be com-
pared to the gold standard. Some languages may have
more lemmas for the same word form. Most of the lead-
ing search tools are able to handle this phenomenon (Lu-
cene, Elastic search, MS Indexing Service, MSSQL Full-
text search, etc), others not (e.g. Tovek tools). A stemmer
module typically has one input word without its context,
so it has no chance to disambiguate its stem alternatives. It
might provide only a heuristic ranking. There can be more
strategies: use the first one, use the most probable one or
use all of them.

The tool counts lemma accuracy first: how many times
the first lemma is correct. Secondly, another 3 metrics are
applied which mark the false alternatives in a strong and
a weak way. The latter one is called average precision at
maximum recall (Lindén, 2009), for n lemmas before the
correct one, we get a precision of 1/(n+1). The benefit
of this metric that it evaluates the lemma ranking of the
stemmer.

Other metric assumes that every lemma will be stored,
so each incorrect lemma means false positive (fp), correct
lemmas mean true positive (tp), and missing one means
false negative (fn).

Third metric concentrates on the first stem: correct
means tp, incorrect is fn, and fp is the case when the correct
stem exists in the alternatives (but not at the first place).

Fourth metric takes into consideration all correct lem-
mas occured in the corpus compared to the output of a
stemmer. Each word form in the corpus gets its all lemmas,
and these sets were compared to the output of a stemmer.
Their intersection is tp, lemmas only in corpus are fn, and
lemmas only from stemmer are fp.

In addition, Paice metrics described in Section 2. are
also counted: U, IO, ERRT by NLTK library (Bird, 2006).
It is based on list of words with their lemmas and stems,
which is available. In each metric F-score is the harmonic
mean of the recall and the average precision.

To sum it up, five metrics are applied to the output of
the stemmers, which measure their lemma accuracy, their
lemma ranking algorithm, their incorrect lemmas, their
lemmas compared to all possible correct lemmas and Paice
metrics as well. No doubt, the stemmers have disadvantage
in this evaluation (they do not produce a lemma by design),

Isource code of the tool is available at
https://github.com/endredy/stemmerEval

235

but this metrics might give an overview about the stemmer
and the language.

4. Metrics on the IR quality of the stemmers

The main idea of this article is that every corpus with
lemmas can be used as an IR evaluation data set. In the
tool presented here, every sentence in the corpus will be
the result item of an IR (hit), and its words (in their original
forms) are the queries. These word-sentence connections
will be used as a gold standard, and each stemmer will
be tested against this: calculation of precision and recall is
based on the sets of sentences determined by stemmers and
by the gold standard (illustrated on Figure 1).

sentence 1 sentence 2
I v
[stem 1|[stem 2| - [stem N]| * [stem 1]

| stem 1|—»{ sentence 1, sentence k, ... |
word 1 J P

|word 2 I—’I stem 2|—>{ sentence 1, sentence j, ... I

|word Nj-—»|stem N|—>{ sentence 1, sentence i, ... |

Figure 1: IR quality evaluation of a stemmer, based
on a corpus with lemmas: sentences=documents and
words=queries, sentence sets are compared to the gold
standard

On the one hand, the tool contains a Lucene evaluation
java code as well: sentences of the corpora (as separate
documents) are indexed by stemmers, and each word (as
a query) gets a result set which is compared to the gold
standard. This is a classical collection set based evaluation,
but the collection is big (millions of doc) and it is made
automatically from the corpus. This java code evaluates in
two ways: evaluates all result items, and evaluates only the
first n results. This latter option reflects the mode when a
human verifies the results: only the first n items matter.

4.1.

On the other hand, there is another approach without
IR system. Every word of the corpus has a sentence set,
and gold standard sets are defined by the hand annotated
lemmas of the corpus, while test sets come from the stem-
mers. The following F-score calculation makes it possible
to evaluate the usefulness of a stemmer without the evalu-
ation of lemma precision or even using an IR system. This
means that during a test process each word of the corpus
is stemmed by the tested modules, and our evaluation tool
stores the original word form, its stem(s) and the sentence
identifier (SID). Stopwords are skipped. At the end of the
process, the SID of every input word is compared to the
gold standard. A standard metric was used for measuring
performance. If a SID of an input word from a stemmer is
in the gold standard, it means true positive, if not, it means

Experimental evaluation method

false positive. Finally, if a SID of a word exists in the gold
standard but it is missing from the same word SID set of a
stemmer, it means a false negative result.

The F-score of this evaluation method correlated with
the native IR evaluation made by Lucene (Section 4.), if
all result items were evaluated (not only the first n). It was
verified by Pearson correlation.

The false positive errors are usually caused by an over-
stemmed word: for instance occasions gets the stem oc-
cas, so it might get hits with occasionally, occasionalism
or even worse. These false positive hits reduces precision.
However, a real IR system has ranking, which might hide
the noisy hits of overstemming: these hits are ranked to-
wards the end of the result list, thus these false results
do not cause problems in practice. How can we simulate
ranking in this test? We assume that the true positive hits
are top-ranked by the IR, therefore we apply a logarithmic
metrics on the false positive results. This metric reflects
a ranked hit list, where the items have decreasing import-
ance on the list. (This is similar to the case, when a human
usually uses only the first n result pages of a search. Less
accurate hits are acceptable on later pages, as the searcher
probably never visits them.)

This method evaluates the quality of a stemmer or lem-
matizer alone assuming that the original word form is not
added to the index. It just measures how exactly a stemmer
clusters different inflected word forms.

5. The evaluation tool

The previously described methods were implemented.
Gold lemma extraction from corpora and metrics described
in Section 3. and 4.1. were implemented in a Python, Lu-
cene based IR evaluation (method of Section 4.) was im-
plemented in java. These tools were used in the evaluation
of 10 stemmer modules for 3 languages. First, the test in-
puts and their gold standards were generated from a corpus
with lemmas. Each corpus has its own format, therefore
the extraction script needed customization to have the fol-
lowing, uniform (word, lemma) tuples in a file, each tuple
in a new line. Sentences were delimited by an empty line.
Second, the stemmers were run on the input words, and
their outputs were stored in separate files. These files and
the gold standard were the inputs of our tool: it checked
every word of the corpus, and executes the methods de-
scribed in Sections 3. and 4.

The native IR evaluation starts with extracting the sen-
tences from corpora, each sentence gets an ID, and all
unique word forms get a sentence ID list: the given word
occurs in those sentences. This will be the gold standard.
Then, each sentence was indexed as a separate document
by every stemmer, and all unique words of the corpus were
the queries. The result sets were compared to the gold
standard. These codes are available.

6. Tested stemmer modules

One of the most popular open source stemmer is Hun-
spell, which is widely used, mainly in open source pro-
jects. At the time of writing this article, more than 30 ap-
plications use it, including LibreOffice, OpenOffice, Fire-
fox, Thunderbird and Google Chrome. Basically it is used

236

for spell checking, but it can lemmatize as well. Hunspell
lexicons were created for several languages.

The Snowball stemmer is an algorithmical one, it can
handle many languages, and it is available in several ap-
plications. During this evaluation it was used from NLTK
sdk (Bird, 2006), but it is also available from the Lu-
cene engine. Snowball was adapted to Hungarian, too
(Tordai and De Rijke, 2006). A morphological analyzer
Humor (High-speed Unification MORphology) (Prészéky
and Kis, 1999) has a lemmatizer module as well, which
was also evaluated. It was developed by the author. This
product can be found in several applications (Microsoft
products, web applications), and it is not open source. It
has lexicons for more than 20 languages. Hunmorph(Trén
et al., 2005) and Hunmorph-foma (Hulden, 2009) were
also tested. Apache Lucene (Hatcher et al., 2004) is a pop-
ular, high-performance search engine library with several
stemming modules. Some of them were tested: KStem,
Porter (Porter, 1980) and EnglishMinimal for English,
and Stempel, Morfologik for Polish. (Lucene also has a
Hunspell java implementation, but the original, c++ ver-
sion was used.)

7. Corpora used in evaluation

Evaluation was done in three languages, which rep-
resent different levels of inflectional morphology: English
(low), Polish (medium) and Hungarian (high). First, Brit-
ish National Corpus (Clear, 1993) was used, which is a
100 million word snapshot of British English (with lem-
mas). The corpus contains more than 2,000,000 sentences
from the widest possible range of linguistic productions,
from several domains. Evaluation was made with the 3rd

XML edition of the BNC.
A I-million word subcorpus (Degérski and
Przepiérkowski, 2012) of the National Corpus of

Polish is available with 64,000 sentences, which was used
for Polish tests. It is also a well balanced large corpus,
with several domains: it contains classic literature, daily
newspapers, specialist periodicals and journals, transcripts
of conversations, and a variety of short-lived and internet
texts.

Hungarian tests were run on the Szeged Treebank
(Csendes et al., 2005), the biggest Hungarian manually
annotated corpus which contains about 80,000 sentences
with 1,200,000 words annotated with lemmas.

8. Results

The size of this article do not allow to show every eval-
uation table (6+2 per languages), therefore two aspects
were selected: first lemma evaluation (3rd metric described
in Section 3.) and IR evaluation by Lucene (Section 4.).
The results of the English stemmers are interesting. Re-
call of Kstem, Porter, En-minimal and Snowball are high
but their precisions are very low. It is caused by millions
of fp hits. (On the contrary, without a stemmer the preci-
sion is high but recall is low.) One reason for these res-
ults is that the stemmers above split words with a hyphen
into more words (for instance low-print-run will be low,
print and run), which causes low precision. Another type
of error is overstemming: they cluster too many different

. no stem Kstem Porter En-minimal | Snowball Hunspell Humor

domain tokens

F oov F ooV F ooV F ooV F oov F oov F ooV
ACPROSE I57M | 784 0 |926| O | 671 O |916| O 714 0 | 87.1 | 9.8 | 93.3 | 438
CONVRSN 42M | 736 | O | 936 | O [86| O |916| O 870 | 0 | 905 | 53 | 885 | 49
FICTION 16.IM | 728 | 0 | 903 | O | 758 | 0 |8.4 | O 7951 0 |86.6| 6.1 | 914 | 39
NEWS 94M | 698 | 0 | 921 | O | 747] 0 | 9.0 O 794 | 0 | 86.1 | 119 | 914 | 74
NONAC 241M | 744 0 | 921 | O |70.1 | O |9.6]| O 7451 0 | 867 99 |926 | 53
OTHERPUB | 179M | 742 | 0 | 923 | 0 |734 | 0 |913| O 776 | 0 | 875 | 9.8 | 923 | 6.0
OTHERSP 6IM | 786 | 0 |943| 0 | 779 0 | 928 | O 820 | 0 | 906 | 51 | 906 | 56
UNPUB 44M | 722 | 0 | 927 | 0 | 728 | 0 |913] O 76.6 | 0 | 877 | 9.1 | 926 | 55
total 983M | 744 | 0 | 922 | 0 | 727 0 |94 | O 770 | 0 | 873 | 9.0 | 92.1 | 54

Table 1: First lemma evaluation of English stemmers on gold standard lemmas of the BNC (Section 3.)

words together, which words only have the same prefix.
This decreases precision drastically. Nevertheless, over-
stemming and splitting words by hyphens cause larger in-
dex and lower precision (Table 1, 2). The stemmers differ
significantly in method 2 in Section 4. (according to ttest),
except Porter and Kstem.

Polish results also show that stemming quality has great
impact on the F-score of the IR. A stemmer can improve
the F-score of an IR system at least 2 or even 2.5 times (see
Table 4), the best scores belong to Morfologik stemmer in
both testing methods (Table 3 and 4).

The results of the Hungarian stemmers can be seen
in Table 5, 6 and 7. Since this language is heavily ag-
glutinative, stemming improves the F-score significantly,
even with the weakest stemmer (more than 50% differ-
ence comparing to the results without any stemmer). The
best scores belong to the Humor stemmer in both meth-
ods. Algorithmic stemming is not appropriate for this lan-
guage. According to ttest, Hunmorph and Hunmorph-foma
stemming results have no significant differences, the others
have.

Another important property is the speed of a stemmer:
how many tokens can be stemmed in a second by the given
module. It correlates with the time of reindexing, which
can be critical in production environment. These perform-
ances can be seen on Table 8. Stemmers proved to be 4-5
times faster than lemmatizers.

stemmer tokens/second
En-minimal 86 165
Kstem 85353
Porter 84 032
Snowball 47 651
Stemfel 29 173
Morfologik 19 862
Hunmorph 275
Hunmorph-foma 27 850
Hunspell 13 105
Humor 5 629

Table 8: Speed of the stemmers, stemmed tokens/second
(on a 8-core 1.1GHz CPU, 74GB memory, 64 bit ubuntu
server)

237

9. Conclusion

In agglutinative languages the characteristic of the two
evaluation methods are similar: the better the quality of the
lemmatization, the better the quality of the IR will be. In
the case of English, this connection is not verified. The cor-
pus based evaluation makes it possible to create automat-
ically gold standard for IR evaluation of stemmers. An ex-
perimental IR evaluation method was defined which works
without a real IR system, and its result correlated with the
real IR evaluation made by Lucene (Pearson correlation).

When the IR evaluation was made only on the first n
results, it was designed to simulate a human verification.
However, it is able to also evaluate the ranking algorithm
of the IR system itself.

The defined six metrics on the direct output of the stem-
mers make it possible not only to compare stemmers but to
give feedback about typical stemmer errors, which can be
useful at developing stemmers.

This evaluation gives an up-to-date overview about
available stemmers, and it provides also a tool which can
be used for evaluating other languages and stemmers.

Acknowledgments.

I am grateful to Dr Néra Wenszky, Dr Gdbor Prészéky
for their help and encouragement, to Attila Novak for
thinking together, and to the anonym reviewers for their
valuable suggestions.

10. References

Bird, Steven, 2006. NLTK: the natural language toolkit.
In Proceedings of the COLING/ACL. ACL.

Clear, Jeremy H., 1993. The digital word. chapter The
British National Corpus. Cambridge, MA, USA: MIT
Press, pages 163—187.

Csendes, D., Csirik J., Gyiméthy T, and Kocsor A, 2005.
The Szeged Treebank. In Text, Speech and Dialogue.
Springer.

Degorski, tukasz and Adam Przepiérkowski,
Recznie znakowany milionowy podkorpus
Wydawnictwo Naukowe PWN, pages 51-58.

Gormley, Clinton and Zachary Tong, 2015. Elasticsearch:
The Definitive Guide. O’Reilly Media, Inc.

Haldcsy, Péter and Viktor Trén, 2007. Benefits of
resource-based stemming in Hungarian information re-

2012.
NKJP.

domain no stemmer | Kstem | Porter | En-minimal | Snowball | Hunspell | Humor
academic prose 425 58,8 51,7 55,6 49,8 53,4 48,7
conversation 52,9 72,8 75,8 67,4 74,3 65,7 77,4
fiction and verse 46,0 68,8 68,6 60,1 64,5 62,5 67,1
newspapers 52.3 73,3 69,4 67,4 67,4 65,9 78,4
non-academic prose 48,3 66,3 58,6 63,2 55,8 59,4 54,7
other published materials 46,9 66,5 62,0 62,3 60,2 59,9 55,9
any other spoken text 524 74,3 70,7 68,7 69,2 64,9 78,0
unpublished materials 48,4 68,9 64,4 62,7 63,5 61,5 60,0
total 47,2 66,5 61,4 61,8 59,0 59,9 59,0

Table 2: IR quality evaluation of English stemmers on the sentences of the BNC by Lucene (Section 4.)

: no stemmer Stempfel Morfologik Hunspell Humor

domain tokens

F ooV F ooV F oov F oov F oov
literature 54 205 | 53.80 0 7836 | 2.7 | 8934 | 2.7 | 8445 | 56 | 88.71 | 7.8
information and informative 56779 | 54.08 0 7731 | 39 | 89.09 | 39 | 84.38 | 7.7 | 87.87 | 5.8
conversations 59024 | 68.26 0 7260 | 9.5 | 83.62 | 9.5 | 7858 | 11.3 | 79.63 | 12.8
fiction 169 270 | 55.81 0 7748 | 4.1 | 8898 | 4.1 | 84.38 | 59 | 87.84 | 4.2
spoken radio 23303 | 64.52 0 7394 | 64 | 86.11 | 64 | 82.12 | 81 | 83.43 | 10.2
research and teaching 20229 | 50.23 0 79.56 | 3.6 | 89.64 | 3.6 | 8590 | 7.1 | 89.38 | 5.8
internet 72273 | 55.27 0 77.15 | 3.2 | 88.78 | 3.2 | 8348 | 80 | 86.02 | 7.8
journalistic 506214 | 51.78 0 7923 | 2.8 | 90.03 | 2.8 | 86.10 | 6.1 | 89.16 | 4.6
written-Parliament 66 315 | 51.24 0 7877 | 43 | 8985 | 43 | 8548 | 74 | 89.86 | 2.7
utilities 30998 | 52.22 0 80.82 | 1.2 | 90.65 | 1.2 | 8748 | 7.5 | 91.38 | 2.3
not classified 10 140 | 54.38 0 78.72 | 2.0 | 90.11 | 2.0 | 8555 | 39 | 88.52 | 3.9
total 1028 671 | 54.21 0 7820 | 3.6 | 89.25 | 3.6 | 85.02 | 6.7 | 88.08 | 5.4

Table 3: First lemma evaluation of Polish stemmers on gold standard lemmas of the 1-million words PNC (Section 3.)

trieval. In Evaluation of Multilingual and Multi-modal
Information Retrieval. Springer, pages 99-106.

Hatcher, Erik, Otis Gospodnetic, and Michael McCand-
less, 2004. Lucene in action.

Hulden, Mans, 2009. Foma: a finite-state compiler and
library. In EACL. ACL.

Hull, David A., 1996. Stemming algorithms - a case study
for detailed evaluation. Journal of the American Society
for Information Science, 47:70-84.

Lindén, Krister, 2009. Entry generation by analogyencod-
ing new words for morphological lexicons. Northern
European Journal of Language Technology, 1(1):1-25.

Paice, Chris D, 1994. An evaluation method for stemming
algorithms. In Proceedings of the 17th ACM SIGIR con-
ference on Research and development in information re-
trieval. Springer.

Porter, Martin F, 1980. An algorithm for suffix stripping.
Program, 14(3):130-137.

Porter, MF and Richard Boulton, 2001. Snowball stem-
mer.

Prészéky, Gabor and Baldzs Kis, 1999. A Unification-
based Approach to Morpho-syntactic Parsing of Agglu-
tinative and Other (Highly) Inflectional Languages. In
R. Dale and K. Church (eds.), Proceedings of the 37th
annual meeting of the Association for Computational
Linguistics on Computational Linguistics. Association
for Computational Linguistics.

Smiley, David, Eric Pugh, Kranti Parisa, and Matt
Mitchell, 2015. Apache Solr Enterprise Search Server.
Packt Publishing Ltd.

Tordai, Anna and Maarten De Rijke, 2006. Four stemmers
and a funeral: Stemming in Hungarian at CLEF 2005,
Trén, Viktor, Andrds Kornai, Gydrgy Gyepesi, Laszld
Németh, Péter Haldcsy, and Déniel Varga, 2005. Hun-
morph: open source word analysis. In Proceedings of

the Workshop on Software. ACL.

238

domain no stemmer | Morfologik | Stempel | Humor | Hunspell
literature 44.6 85.9 75.8 80.6 81.5
information and informative 43.7 86.3 75.2 80.5 81.9
conversations 39.0 83.2 70.6 67.7 80.2
fiction 32.8 85.9 72.5 77.2 80.8
spoken-Radio 49.0 85.3 76.9 76.7 82.0
research and teaching 53.7 90.4 82.2 86.8 87.0
internet 40.1 81.3 70.9 72.8 77.8
journalistic 26.3 854 72.3 78.6 81.2
written-Parliament 42.8 92.6 71.3 87.4 90.6
utilities 42.8 92.1 81.5 87.9 89.5
not classified 63.0 88.8 81.8 85.2 84.4
total 31,3 85,7 73,0 78,6 81,6

Table 4: IR quality evaluation of Polish stemmers on the sentences of the 1-million words PNC by Lucene (Section 4.)

: no stemmer | Hunspell | Hunmorph-foma | Hunmorph | Snowball Humor
domain tokens
F oov F oov F ooV F ooV F ooV F oov
literature 185436 | 53.1 0 90.7 | 6.1 | 83.8 11.9 859 | 1.8 | 650 | 0 | 935 | 25
student 278497 | 50.3 0 923 | 2.6 | 835 11.3 888 | 1.2 | 615 O | 931 | 0.7
newspaper 182172 | 59.9 0 882 | 7.8 | 844 14.2 80.1 | 40 | 728 | 0 | 946 | 1.8
IT 175991 | 59.7 0 85.1 | 13.5 | 829 18.1 803 | 65 | 764 | 0 | 935 | 45
juristic 220 069 | 66.2 0 854 | 11.1 | 81.5 22.2 814 | 86 810 | O |915 | 3.2
business 186 030 | 61.7 0 83.6 | 11.6 | 844 17.3 771 78 | 73.6 | 0 | 951 | 2.1
total 1228 195 | 58.6 0 878 | 85 | 834 15.8 824 | 51 | 719 0 | 935 | 24
Table 5: First lemma evaluation of Hungarian stemmers on Szeged TreeBank (Section 3.)

domain no stemmer | Hunspell | Hunmorph-foma | Hunmorph | Snowball | Humor

literature 275 91.8 92.8 86.7 68.7 96.2

student 20.2 95.1 93.5 91.2 68.7 97.6

newspaper 41.4 86.4 90.4 76.0 78.1 954

IT 25.1 89.9 91.1 85.0 81.9 96.7

juristic 19.7 91.1 89.6 88.4 87.2 95.8

business 25.5 90.1 93.3 90.3 82.3 97.8

total 24.5 914 91.8 87.5 78.3 96.7

Table 6: Experimantal IR quality evaluation of Hungarian stemmers on the sentences of Szeged TreeBank (Section 4.1.)

domain no stemmer | Hu-light | Snowball | Hunspell | Humor
literature 19.9 62.4 62.6 80.3 83.0
student 14.6 62.0 62.0 80.2 83.8
newspaper 26.5 69.4 72.8 74.7 84.6
IT 21.3 76.2 78.1 79.0 87.1
juristic 16.5 80.6 82.0 77.5 87.1
business 25.5 78.4 78.4 46.4 90.8
total 19.4 71.1 72.2 72.2 85.7

Table 7: IR quality evaluation of Hungarian stemmers on the sentences of Szeged TreeBank by Lucene (Section 4.)

239

