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Abstract

This article describes a novel technique in Computer-Aided Translation (CAT) which is meant to be a new generation of translation
memory lookup. It combines the benefits of a regular translation memory search (sometimes referred to as fuzzy sentence matching)
with the power of a concordance searcher. Input to the search algorithm is a whole sentence, while the output consists of a list of pairwise
disjoint fragments from the memory, which cover the input sentence. These fragments may come from different sentences in the memory.
As there may exist more than one coverage of the input sentence by the fragments, a specially designed coverage scoring algorithm is
implemented. A crucial feature of every CAT mechanism is time performance. For that reason, the implementation of the new search
technique uses a custom crafted version of a well known data structure — suffix array.

1. Introduction

Recent decade has shown a significant rise of interest in
enhancing the process of human translation with the help
of a computer. Computer-Aided Translation has proved
to increase the productivity of human translation. As new
techniques are constantly being developed, one remains the
most fundamental and irreplaceable — translation memory
searching. With the use of a translation memory a trans-
lator can reuse previously performed translations, which
decreases the amount of work and improves consistency of
resulting translations.

However, regular translation memory searching
scheme involves using the whole sentence as a pattern and
retrieving the most similar sentences from the memory.
This may result in omitting valuable fragments. For in-
stance, let us suppose that the search pattern is a sentence
S, and the memory contains a sentence C;.5C5, where Cy
and C5 are contexts of considerable length. This match is
either retrieved with a low score or not returned at all.

In order to overcome this shortcoming, this article in-
troduces a new translation memory search algorithm, Con-
cordia, inspired by another CAT technique — concordance
searching. The main difference between Concordia and
a standard concordancer is the fact that Concordia search
uses the whole sentence as a pattern and returns all frag-
ments that cover it. The search algorithm is based on a
suffix array index in order to ensure fast lookup times.

Similar research on novel translation memory search-
ing was presented in (Planas, 2005). The SIMILIS soft-
ware introduced in this work finds syntactical chunks in
a translation memory. This, however, requires syntactical
analysis of both the search query and the sentences in the
translation memory.

Section 2. presents the suffix array data structure, the
foundation of the Concordia algorithm. Author’s transla-
tion memory indexing algorithm is described in Section 3.
Section 4. looks into the Concordia search algorithm and
presents its speed evaluation. Conclusions and future work
plans are listed in Section 5.
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2. Suffix arrays

Suffix arrays were introduced back in 1990’s (see
(Manber and Myers, 1990) and (Nagao and Mori, 1994)).
Several years later they were applied to the problem of ap-
proximate searching in DNA sequences. This had a vast
influence on reviving the research on approximate match-
ing problem in the years 2000-2010. State-of-art solutions
in this area are offline searchers, based on indexes.

The survey (Navarro et al., 2000) presents various
methods of representing, generating and searching in-
dexes, including methods based on the idea of a suffix
array. The article (Ghodsi, 2006) describes an example
search algorithm using the suffix array.

2.1. Idea

Suffix array is a data structure designed to hold infor-
mation about the text to be searched (denoted 7). In order
to present the structure of a suffix array, let us consider the
following example.

Let T =’antananarivo’. This text should be seen as an
array of letters, for instance T'[0] ="a’ and T'[2] ="t".

The suffix array .S of the text 7" is defined as an array
of integers corresponding to starting positions of all suf-
fixes of 7', sorted in lexicographical order. It is shown in
Table 1. For instance, S[2] = 5 denotes that lexicographi-
cally third suffix (0-based index 2) is the suffix missing the
first 5 letters: “anarivo’.

Finding a pattern P of length m in the text T" of length
n using the suffix array .S is done by performing two bi-
nary searches. The first one is done to find the starting
position of the searched pattern, the second — to find the
end position. According to (Manber and Myers, 1990) this
operation consumes O (m-log n) time, assuming that com-
paring suffixes takes m time on average.

However, Manber and Myers in their article of 1990 al-
ready suggested ways of improving the search times. The
following sections lists selected modern, state-of-art varia-
tions of the original idea of suffix arrays.

2.2. Variations

Variations of the classic idea of suffix arrays were de-
veloped to enhance the properties of this data structure.
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Table 1: Suffix array for example text

The biggest impact was put on decreasing the size of the
suffix array, hence the research on compressed suffix ar-
rays. Some of these solutions are described below.

2.2.1. Succinct SA

Succinct Suffix Arrays, described in (Makinen and
Navarro, 2005), use the ideas of an FM-index and Huff-
man trees. According to the authors, the size of the in-
dex build for the text 7' of the size n is bounded by
n(Ho(T) + 1)(1 + O(1)) bits, where Ho(T) is the 0-th
order empirical entropy of 7". Counting of the occurrences
of a pattern of length p in the text takes O(pH) time.

2.2.2. Compressed SA

Compressed Suffix Arrays (CSA) is a group of algo-
rithms aimed at reducing the size of a suffix array by the
means of compression (see (Grossi and Vitter, 2006)). The
CSA transforms a suffix array S[1..n] into a sequence of
numbers t(z) such that S[ ()] = S[i] + 1. The properties
of the function v allow for its compressed representation.
Index of this type requires O(nHy(T") +n loglog o) space,
where o is the size of the alphabet.

3. Concordia index

This section presents the author’s solution for indexing
a translation memory. The index is based on suffix array
and other auxiliary data structures.

3.1. Overview

Main operations performed on the index are the follow-
ing:

e addTolndex(sentence, id) This method is used to
add a sentence to the index along with its unique id.
The id is treated as additional information about the
sentence and is then retrieved from the index by the
search algorithm. This is useful in a standard sce-
nario, where sentences are stored in a database or
a text file, where the id is the line number. Within
the addToIndex method the sentence is tokenized and
from this point forward treated as a word sequence.

e generateIndex() After adding all the sentences to
the index the generateIndex method should be called
in order to compute the suffix array for the needs of
the fast lookup index. This operation may take some
time depending on the number of sentences in the
index. Nevertheless, its length rarely exceeds one
minute (in reported experiments with 2 million sen-
tences the index generation took 6-7 seconds).

o simpleSearch(pattern) Basic search method takes
a text fragment, tokenizes it and tries to locate all its
occurrences in the index. The return value is a list of
matches, each holding information about the id of the

sentence containing the fragment and an offset of this
fragment in this sentence.

e concordiaSearch(pattern) The unique search
method returns the longest fragments from the index
that cover the search pattern.

Functioning of the index is best illustrated by the fol-
lowing simple search example. Suppose that the index con-
tains the following sentences:

e Novel methods were used to measure the system suc-
cess rates. id=23

e Various statistics, including the school success rate,
were reported. id=12

o The research is still ongoing. id=259

Note that the id’s of the sentences are not consecutive
as there is no such requirement. Let us now search for
the fragment “success rate” in the example index. The re-
turned results are: [sentence id = 23, position in sentence
(offset) = 8] and [sentence id = 12, offset = 5].

Returned results allow for quick location of the con-
texts in which the phrase “success rate” appeared. Note
also that the system returned the result (23,8) (“success
rates”) even though the word “rate” was in plural in the
index.

Author’s index incorporates the idea of a suffix array
described in Section 2. and is aided by two auxiliary data
structures — the hashed index and markers array. Dur-
ing the operation of the system, i.e. when the searches are
performed, all three structures are loaded in RAM.

When a new sentence is added to the index via the
aforementioned addT oIndex method, the following op-
erations are performed:

1. tokenize the sentence
2. lemmatize each token

3. convert each token to numeric value according to a
dynamically created map (called dictionary)

Lemmatizing each word and replacing it with a code
results in a situation, where even large text corpora require
relatively few codes. For example, research of this phe-
nomenon presented in (Jaworski, 2013) reported that a cor-
pus of 3 593 227 tokens required only 17 001 codes. In this
situation each word could be stored in just 2 bytes, which
significantly reduces space complexity.

The following sections will explain in detail the data
structures used by the index.
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Novel | methods | were | used | to | measure | the | system | success | rates
novel | method be use to | measure | the | system | success | rate
1 2 3 4 516 7 8 9 10
Various | statistics | including | the | school | success | rate | were | reported
various | statistic | include the | school | success | rate | be report
11 12 13 7 14 9 10 3 15

The | research | is | still | ongoing

the | research | be | still | ongoing

7 16 3 17 18

Table 2: Hashed sentences

3.2.

Hashed index is an array of sentences in the index. The
sentences are stored as code lists. For example, let us com-
pute the hashed index for the sentences of the example in-
dex. Results of this process for all three example sentences
are shown in Table 2.

Code lists obtained from the sentences are then con-
catenated in order to form the hashed index. A special code
(referred to as EOS — end of sentence) is used as sentence
separator. The hashed index is used as the “text” (denoted
T) for the suffix array.

Index — hashed index

3.3.

When a fragment is retrieved from the index with the
help of a suffix array, its position is returned as the search
result. However, this position is relative to the “text”,
stored as the hashed index. For example, if we searched
for the fragment “success rate”, as in previous examples,
we would obtain the information about two hits: one at
position 8, and the other at position 16 (mind that the po-
sitions are 0-based and EOS characters count as single text
positions and any punctuation is omitted).

This result does not contain information about the id of
the sentence where the fragment was found nor the offset
of the fragment in this sentence. Naturally, this informa-
tion is retrievable from the hash index alone. However, op-
eration of that kind would require searching the hashed in-
dex in at least O(n) time in order to determine which sen-
tence contains the given position. In addition, this would
only return the ordinal number of the sentence, not its id,
since this information is not stored in the hashed index.

In order to overcome these difficulties, a simple, yet
effective data structure was introduced. Markers array is
used to store information about the sentence id and off-
set of each word. Technically it is an array of integers of
the length equal to the length of the hashed index. Each
integer in the markers array stores both the sentence id
and the offset of the corresponding word in the hashed in-
dex. Current implementation uses 4-byte integers, where
3 bytes are assigned to store the sentence id and 1 byte
is used for the offset. This means the index can store up
to 16 777 216 sentences, each no longer than 255 char-
acters (one position is reserved for the EOS character).
For example, the pair: id = (342);p = (101010110)s,
of fset (27)10 = (11011)2 is stored as the integer:

Index — markers array
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(10101011011011)3 = (10971)10.

Even though the markers array is not free from redun-
dancy, the cost space occupied by this data structure is
affordable on modern computers. The benefits of its in-
fluence on speeding up the search process are much more
significant.

34.

The last element of the index is a generated suffix array.
It is constructed after the hashed index is complete. Tech-
nically, this structure is a classic suffix array for the hashed
index. As stated in Section 3.2., hashed index plays the
role of the “text” ("), whose “letters” are dictionary codes
of words.

Algorithm used for construction of the suffix array is an
implementation of classic construction algorithm proposed
by Manber and Myers, running in O(n - logn) time. It
differs significantly from the naive approach (generating
suffixes, sorting them and reading their positions) which
runs in O(n? - logn).

Sorted suffixes for the example hashed index result in
the following suffix array: [0, 1, 2, 18, 23, 3, 4, 5, 6, 14,
21,7, 16,8, 17,9, 11, 12, 13, 15, 19, 22, 24, 25, 26, 20,
10].

Index - suffix array

3.5. Simple searching

Searching of the index is done according to the classic
suffix array search procedure described in Section 2.1. In
order to make this possible, an input search phrase must
first undergo the same procedure as a sentence when being
added to the index (lemmatizing and coding).

Let us demonstrate the search on the same example
search pattern presented in Section 3.1. We are searching
for the pattern “success rate” in the example index. The
pattern is tokenized and lemmatized, thus transformed into
a sequence of lemmas: ’success’ ’rate’. These lemmas are
then encoded using the dictionary generated during the cre-
ation of the hashed index. As a result, the search pattern
has the form ’9 10°.

By searching in the suffix array with the help of the
hashed index we know that the phrase “success rate” can
be found in the source text at positions 16 and 8. In fact,
we also know that this phrase is present only at these posi-
tions, as follows from suffix array properties. However,
we expect that the final search results will be given in



the form [sentence id, offset]. For that we need to check
the markers array. In this example M[8] = (23,8) and
M][16] = (12,5). This corresponds to the expected final
results.

3.6. Big alphabet problem

It must be mentioned that the approach presented above
causes a difficulty. Normally, suffix arrays are used to in-
dex regular texts over a standard ASCII alphabet. In these
cases the size of the alphabet is 255 characters, which
means that every character can be stored in just one byte.
Classic suffix array implementations depend heavily on the
small size of the alphabet and are very sensitive to this
property. Meanwhile, the approach presented above uses
4-byte integer values as characters, which brings the al-
phabet size to 4 294 967 295.

There are search indexes designed to deal with even
bigger alphabets (see (Ferragina et al., 2004)). However,
in practice, the implementations of classic suffix arrays
prove more effective. Therefore, in order to deal with the
problem of big alphabet, the following solution was imple-
mented. The 4-byte characters in the text (hashed index)
are divided into 4 separate bytes. Each of the bytes is then
treated as a separate char. Thus, we obtain a text which is
4 times longer, but consists of considerably shorter charac-
ters.

4. Translation memory lookup algorithm -
Concordia

4.1.

Concordia search internally uses the simple search pro-
cedure but serves for a more complicated purpose. It is
aimed at finding the longest matches from the index that
cover the search pattern. Such match is called “matched
pattern fragment”. Then, out of all matched pattern frag-
ments, the best pattern overlay is computed.

Pattern overlay is a set of matched pattern fragments
which do not intersect with each other. Best pattern over-
lay is an overlay that matches the most of the pattern with
the fewest number of fragments. The score for this best
overlay is computed according to the following procedure.
The score is a real number between 0 and 1, where 0 indi-
cates, that the pattern is not covered at all (i.e. not a single
word from this pattern is found in the index). The score
1 represents the perfect match — pattern is covered com-
pletely by just one fragment, which means that the pattern
is found in the index as one of the examples. The formula
used to compute the best overlay score is shown below:

Algorithm details

len log len 1
°T Z len((j;)) ' loi lenijpj; —i+- 1 1
feo
where:
5 —score
f — fragment
O — overlay
p — pattern

len(f),len(p) — number of words in fragment and pattern
respectively.
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According to the above formula, each fragment cov-
ering the pattern is assigned base score equaling the rela-
tion of its length to the length of the whole pattern. This
concept is taken from the classic Jaccard index. However,
this base score is modified by the second factor, which as-
sumes the value 1 when the fragment covers the pattern
completely, but decreases significantly, when the fragment
is shorter. For that reason, if we consider a situation where
the whole pattern is covered with two continuous frag-
ments, such overlay is not given the score 1.

The search procedure itself first tokenizes the input sen-
tence and replaces its words with codes in a manner sim-
ilar to the addT oIndex method. Let us denote the length
of input sequence s by m. Then, the following steps are
performed:

1. Forall 7 from0Otom — 1

(a) take the i-th suffix of s

(b) find those fragments in the index that have the
longest common prefix with this suffix

(c) add at most three of such fragments to the result-
ing matched pattern fragments set

2. Among the fragments in the matched pattern frag-
ments set find a subset of non-overlapping fragments
that maximize the score.

The step 1b) is performed by multiple suffix array bi-
nary searches, which first search only the first word of the
suffix, then the first two and so on. Each of these steps nar-
rows a continuos fragment of the suffix array, containing
those fragments from the translation memory, which start
with the first words of the searched suffix.

As a result, a list of matched pattern fragments is ob-
tained. However, these fragments might overlap. For that
reason step 2. is performed, which follows an idea of beam
search.

4.2. Concordia search example

Let us consider an example illustrating the Concordia
search procedure. Let the index contain the following sen-
tences:

e Alice has a cat id=56
e Alice has a dog id=23
e New test product has a mistake id=321

e This is just testing and it has nothing to do with the
above id=14

The results of Concordia searching for pattern: “Our
new test product has nothing to do with computers” are
presented in Table 3. Best overlay: [1,5];[5, 9], score =
0.53695.

These results list all the longest matched pattern frag-
ments. The longest is [4,9] (length 5, as the end index is
exclusive) which corresponds to the pattern fragment “has
nothing to do with”, found in the sentence 14 at offset
7. However, this longest fragment was not chosen to the
best overlay. The best overlay are two fragments of length
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321
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321
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321
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Table 3: Concordia search results

4: [1,5] “new test product has” and [5,9] “nothing to do
with”. Notice that if the fragment [4, 9] had been chosen to
the overlay, it would have eliminated the [1, 5] fragment.

The score of such overlay is 0.53695, which can be
considered as quite satisfactory to serve as an aid for a
translator.

Concordia search thus makes up for standard transla-
tion memory lookup shortcomings. If the above search
was performed using standard techniques, it would prob-
ably return the results: “New test product has a mistake”
and “This is just testing and it has nothing to do with the
above” with low scores. These low-scored matches would
be discarded by the CAT system (as falling below a given
threshold) or ignored by the translator because of insuffi-
cient similarity to the pattern. Concordia search results, on
the other hand, draw the translator’s attention to the cover-
age of specific fragments of the pattern.

4.3. Speed evaluation

As the Concordia algorithm has so far only been imple-
mented as a search library and not a full CAT system, only
speed tests could be run. The speed alone, however, can
determine the usability of the solution. It is desired (if not
required) that search results are returned to the user in less
than a second. For that reason, exhaustive speed test were
run on the Concordia library.

Tests were run on a personal computer(1.70GHz CPU,
3GB RAM). The test corpus used as the text to search
was taken from the JRC-Acquis corpus (Steinberger et al.,
2006). During the test, the Polish version of this corpus
was used. The corpus contained 1 917 637 sentences with
20 062 518 words and 139 378 685 characters. Adding
all these sentences to index took 6min 18.306s, while gen-
erating the suffix array — 6.876s. These figures are very
optimistic, considering the fact that real-world translation
memories are usually one order of magnitude smaller.

Concordia search times are even more promising. The
search experiment consisted in selecting four 10 000 sen-
tences large portions of the JRC-Acquis corpus and using
them as Concordia search patterns. The search times for
the portions were: 2.475s, 2.325s, 2.575s, 2.293s which is
roughly 4000 searches per second.

5. Conclusions and future work

The Concordia search algorithm is designed to be the
new generation of translation memory searching. Aside
from the unique feature of finding the best overlay of the
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search pattern, Concordia does not fail to recognize the
100% matches, which is a key property of a translation
memory searcher. The new technique proved to perform
fast even on large data sets.

Immediate future plans include implementing a CAT
system making use of this technique, in order to conduct
extensive usability tests.

Other future plans consist in using Concordia searching
to perform pre-translation document analysis. Such anal-
ysis is performed in order to determine the cost of human
translation of a document. Concordia scoring mechanism
could be used to compute the total coverage of the doc-
ument by the translation memory and the searching algo-
rithm could provide data necessary for the analysis in short
time.
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