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Abstract
Training statistical machine translation systems used to require heavy computation times. Recent work (Fast align) achieved im-
pressing improvements in the probabilistic approach. We show that, by leveraging the advantages of the associative approach, we achieve
similar, even faster, training times, while keeping comparable BLEU scores.

1.

Sub-sentential alignment, computed based on word as-
sociations, is the core of the training process in Phrase-
based Statistical Machine Translation (PB-SMT). These
two processes are crucial for the accuracy of translation,
but they are also very time-consuming.

The IBM models (Brown et al., 1993) and the grow-
diag-final-and heuristic are the most popular approach.
They have been integrated as the GIZA++ tool (Och and
Ney, 2003), or MGIZA++ (Gao and Vogel, 2008) for a
parallel implementation, in the PB-SMT toolkit Moses'.
A log-linear re-parameterization of IBM Model 2 has re-
cently been implemented in Fast align? (Dyer et al.,
2013) and leads to much faster training times.

IBM models are probabilistic models, so that the opti-
mization process requires the knowledge of the entire par-
allel corpus to estimate the parameters (Levenberg et al.,
2010). On the contrary, associative methods, as character-
ized in (Gale and Church, 1991), do not rely on a global
alignment model, but use local maximization so that each
sentence pair can be processed independently.

Sampling-based multilingual alignment, introduced
in (Lardilleux et al., 2013), and implemented as Any-—
malign3, is an associative method for the computation
of word associations. The method repeatedly draws ran-
dom (mainly small) sub-corpora from the parallel corpus
and obtains occurrence distributions of word pairs (or short
word sequence pairs) within each sub-corpus so as to ulti-
mately produce a word association table.

Bilingual hierarchical sub-sentential alignment, intro-
duced in (Lardilleux et al., 2012), and implemented as
Cutnalign®, is an associative method to compute sub-
sentential alignments. It processes parallel sentences using
a recursive binary segmentation of the alignment matrix. It
yields performance comparable with that of state-of-the-art
methods (Gong et al., 2013).

Figure 1 describes the training process which combines
these two associative methods. It replaces GIZA++ and the
grow-diag-final-and heuristic: Cutnalign uses word as-
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“Thanks to the authors for providing the source code.
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Figure 1: Combination of two associative methods, Any—
malign and Cutnalign, to obtain phrase tables from a
parallel corpus.

sociations produced by Anymalign as input, and outputs
sub-sentential alignments. The relevant script in Moses’
then extracts phrases from sub-sentential alignments.

We present various types of improvements in the cur-
rent implementations of the two above-mentioned associa-
tive methods that make them competitive with recent prob-
abilistic approaches. The combination of the two new ver-
sions of Anymalign and Cutnalign result in an over-
all alignment process that can be faster than Fast align
while delivering comparable results.

2. Multi-processing
2.1.

Anymalign draws random sub-corpora from the
training corpus, and computes the occurrence distribution
profiles for all words over all sentence pairs in each sub-
corpus. Consequently, the process for each sub-corpus is
independent. The sizes of the sub-corpora are randomly
drawn according to a specific distribution. Consequently,
sampling of sizes can also be performed independently in
different sub-processes, without affecting the general be-
havior in any way. Multi-processing is thus done by hav-
ing each sub-process randomly drawing sub-corpora sizes,
drawing sub-corpora of the given sizes, and computing
word associations. After the master process has received

Word associations
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Figure 2: Translation strengths in a French-English sen-

tence pair matrix. Cells are grayed from 0.0 (white) to 1.0
(black) on a logarithmic scale.

an interruptionﬁ, word associations and their associated
frequencies are output by each sub-process and passed over
to the master process which sums up the frequencies of
each word association produced by each sub-process and
computes association scores.

Experiments show that only very small, and insignif-
icant differences in associations output exist between the
mono-processing and multi-processing versions. They are
due to differences in sampling.

2.2. Hierarchical sub-sentential alignment

Cutnalign is easily parallelized by observing that
the sub-sentential alignment process for each different sen-
tence pair is independent from the other ones. Experiments
have shown that using 4 cores divides the time by 3.

By design, introducing multi-processing as described
above does not affect the quality of the final results, be-
cause the parallelized and non-parallelized implementa-
tions are theoretically equivalent. We checked that sub-
sentential alignments outputs in both implementations are
exactly the same.

3. Two approximations in hierarchical
sub-sentential alignment

The original sub-sentential alignment method proposed
in (Lardilleux et al., 2012) can be explained in three main
steps.

First, it builds a sentence pair matrix for a given sen-
tence pair where the translation strength between a source
word s and a target word ¢ is computed as the product of
the two association scores p(s|t) and p(¢|s). In their pro-
posal, as well as in this paper, the association scores are
computed by Anymalign. Figure 2 illustrates such a sen-
tence pair matrix. Notice that the sentence pair matrix is
bi-directional by construction.

®Anymalign is an anytime process, and should be given a
timeout.
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Figure 3: Illustration of the segmentation of sentences
S = X.X and T = Y.Y. Here the block we start with is
the entire matrix. Splitting horizontally and vertically into
two parts gives four sub-blocks. There are two possible di-
rections of segmentation: linear with the two sub-blocks
in black, or cross with the two sub-blocks in white. The
process is repeated recursively in the selected direction

Then, the method searches for the best alignment by
computing the best segmentation of the sentences into sub-
blocks recursively. This is done by computing the optimal
bi-clustering of a bipartite graph, as suggested in the work
of (Zha et al., 2001) for document clustering. For this pur-
pose, a score named cut (see Equation 1) is computed that
sums up’ all the cells in the two sub-blocks of a block in the
sentence pair matrix (see Figure 3). In the definition of cut,
W (X,Y) is the sum of all translation strengths between all
source and target words inside a sub-block (X,Y).

cut(X,Y) =W(X,Y)+W(X,Y) (1)

In order to make the partition as dense as possible, Zha
et al., 2001) use a normalized variant of the score named
Ncut (see Equation 2)3. The best segmentation minimizes
this variant over all Ncut(X,Y") and Ncut(X,Y), thus
making simultaneously the decision of where to split and
in which direction.

cut(X,Y)
cut(X,Y)+2xW(X,Y)

cut(X,Y)
cut(X,Y) +2xW(X,Y)

Neut(X,Y) =

(©))

Finally, as the method recursively segments the ma-
trix, an alignment between the pair of sentences is obtained
when no block remains to segment.

7 A first engineering improvement over the original imple-
mentation, that leads to a large speed-up, was to avoid unnec-
essary subtractions of zeros that were introduced in the original
code by using an elegant, but inefficient, formula for summations.
This improvement is noted by the abbreviation S in Table 1.

8Notice that, by definition: Ncut(X,Y) = Neut(X,Y) and
Ncut(X,Y) = Ncut(X, Y). The same holds for cut.



3.1.

When splitting a block inside the sentence pair matrix
into two sub-blocks, the segmentation method makes two
theoretically separate decisions:

Decision on the direction first

e which location, i.e., where to split, e.g., after (devons,
act) in Figure 3, and

e which direction, linear or cross, i.e., choosing either
the black segmentation or the white one in Figure 3.

The original approach consists in making the two de-
cisions simultaneously, by selecting the max over all pos-
sible Ncut(X,Y) and Ncut(X,Y). For a block of size
N x M, there are 2 x IV x M Ncuts to compute. The orig-
inal implementation of Cutnalign adopts this approach.

Our approach will separate the two decisions. We will
first decide the direction and then the location. In practice,
the use of cut instead of Ncut allows to make the decision
on the direction without much difference in the final seg-
mentation result. This leads to a reduction in computation
because the computation of Ncut requires the computation
of cut: making the decision in advance on cut avoids the
computation of Ncut for the other direction. In this way,
only half of the Ncuts, i.e., N x M, are computed. As only
one location inside a block is selected afterwards, possibly
incorrect decisions on directions do remain unseen, and the
final segmentation is not affected by them.

We measured the ratio of difference in final segmen-
tation between the original approach and our approach on
350,000 French-English sentence pairs. It is only 0.3% in
total. Differences start to appear only after the third level
of segmentation and occur only once in 10,000 cases on
that level. These figures show that the use of cut, instead
of Ncut, for the decision on the direction does not signifi-
cantly affect the final segmentation results. As for time, a
reduction of around 1/3 of computation time is observed.
This is visible in Table 1 where the versions of Cutn-
align denoted A use cut instead of Ncut for the deci-
sion on direction.

Figure 2 visualizes a sentence pair matrix before sub-
sentential alignment. Following intuition, the higher the
translation strength between two words, the more they are
prone to participate in the final sub-sentential alignment.
Experiments on 350,000 French—English sentence pair ma-
trices. showed, that, in average, in each sentence, less than
3% of the word pairs have a translation strength higher
than 0.1. More than 75% of these word pairs belong to
the final sub-sentential alignment. We will now exploit this
trend to reduce the search space in a sentence pair matrix.

3.2. Reduction of the search space

So as to decide the direction and the location for split-
ting into two sub-blocks, cuts are computed at each point
inside a block. We propose to compute a kind of mask
on the sentence pair matrix so as to restrict in advance the
choice for splitting points at any level during segmentation.

In a preprocessing phase, all cells with a translation
strength higher than a threshold are identified. We call
them peak cells. As an illustration, consider the 5 black
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Figure 4: Reduction of the search space

cells with a translation strength higher that 0.1 in Figure 2:
(e, 1), (nous, we), (nous, our), (nos, our) and (., .).

The next phase, the reduction phase, processes the ma-
trix step by step. At the beginning of the first step, the
domain is the entire sentence pair matrix and the search
space is empty. In each step, the following operations are
performed.

Firstly, the smallest rectangle with the largest number
of peak cells is determined. The reason to select such a
rectangle follows the intuition behind the introduction of
Ncut: by approximation, the smallest rectangle with the
largest number of peak cells should lead to the extraction of
the densest sub-blocks. Necessarily, such a rectangle is de-
limited by some peak cells, which are added to the search



Anymalign-i2 + Cutnalign | Alignment time (min) AER (%) BLEU (%)
original + original 15 + 4,500 - 340x+08
original + M 15+ 1,594 0.0 340+0.8
original + M+S 15+ 31 0.0 340+0.8
M + M+S 5+ 32 0.0 34.1+0.8
M + M+S+A 5+ 19 54 342408
M + M+S+R 5+ 15 8.8 34.0+0.38
M + M+S+A+R 5+ 6 11.8  34.14+0.8
M + M+S+A+R+C 5+ 1 11.8 341 4+0.8

Table 1: Incremental gains in time on French—English data. M denotes a multi-processing version (number of cores used: 4).
For Cutnalign, S avoids unnecessary subtraction of zeros (Footnote 7); A uses cut instead of N cut to make the decision
on direction of segmentation (Section 3.1.); R implements reduction of search space (Section 3.2., threshold for translation
strength set to 0.5); C uses re-implementation in C of core component of Cutnalign. The alignment time is the time for
Anymalign plus the time for Cutnalign. In total a speed-up by 750 has been obtained (4,515 / 6)

space. The top matrix in Figure 4 shows the rectangle ob-
tained in the first iteration step. It is the outer rectangle
visualized by dotted lines. It is delimited by the peak cells
(je, 1) and (., .). The bottom matrix shows the one obtained
in the second iteration step (outer rectangle again). Itis de-
limited by the peak cells: (nous, we), (nous, our) and (nos,
our). In all generality, peak cells do not necessarily lie in
the corners; Figure 4 is a particular case.

Then, the next domain for the next step of iteration is
determined by leaving out the cells in the contour which
are not peak cells. In the top and bottom matrices of Fig-
ure 4, such new domains are the inner rectangles delimited
by dotted lines. This leaves out the cells containing a grey
cross in the figure. This can be done with some confidence
because, by construction, sub-blocks extracted from such
locations will leave out many well aligned word pairs and
cannot be expected to yield a promising Ncut. On the con-
trary, one can expect that sub-blocks determined by split-
ting on positions in the new domain will be denser in well
aligned word pairs.

Finally, the corner regions between two successive
smallest rectangles are added to the search space (see mid-
dle matrix in Figure 4), because the positions inside these
regions have a good chance to provide a higher number of
well aligned word pairs when splitting into sub-blocks.

The new domain is passed to the next iteration step.
The iteration process stops when the smallest rectangle
contains one or zero peak cell. In this case, the search
space is not reduced and used as is.

The final reduced search space is thus made out of all
the peak cells, all the corner regions between two succes-
sive smallest rectangles and the last inner rectangle. This
reduced search space is then passed over to the general
sub-sentential alignment process which will no more be
allowed to consider any possible positions to split into sub-
blocks, but will be confined to the positions in the reduced
search space at any level. As a consequence, processing
time will be reduced’. The experiments reported hereafter
also show that the reduction in search space does not affect
BLEU scores.

For well-balanced cases, a reduction from a computation in
O(n?) to O(nlogn) is obtained.
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The procedure described above for reduction of space
was first implemented in Python. Its re-implementation in
C divides the processing time by 6 (see Table 1, last line).

4. Experiments

We evaluate our work by building PB-SMT sys-
tems using the Moses toolkit, lexicalized reordering mod-
els (Koehn et al., 2005) and the KenLM Language Model-
ing toolkit (Heafield, 2011). Accuracy relatively to trans-
lation references is assessed using BLEU.

All the experiments mentioned in this paper use the
data from the corresponding part of the Europarl paral-
lel corpus v3 (Koehn, 2005), so that BLEU scores can be
compared across language pairs, as the training, tuning and
test sets correspond across languages. The training corpus
is made of 347,614 sentences; 500 sentences are used for
tuning; the test set contains 5,000 lines.

4.1.

We incrementally evaluated the improvements pre-
sented in the previous sections on French—English data.

In order to evaluate the difference in the final sub-
sentential alignments obtained, we measured the alignment
error rate (AER) (Ayan and Dorr, 2006) by reference to
the results obtained using the original methods without any
improvement.

As seen in Table 1, we could divide the training time
by 750 without affecting the BLEU scores. Differences in
alignements are observed but positively impact the results.

Incremental improvements

4.2. Comparison with Fast align

We compare the integration of all improvements with
the fastest probabilistic state-of-the-art alignment method:
Fast align. We run it with default settings in two di-
rections, source to target and target to source, to produce
alignments from which a phrase table is extracted using
the grow-diag-final-and heuristic. For Anymalign, we
use the options -i 2 -t 300, i.e., we set a preferred length of
up to 2 words in associations, and a timeout of 5 minutes.

We use 3 language pairs in both directions involving
5 European languages!'®: fr—en (usual test languages), fi—

lOEnglish (en), French (fr), Spanish (es), Portuguese (pt),
Finnish (fi).



Lang. Aligner Align. BLEU
pair time (%)
(min)
frren MGIZA++ 170 34.5+0.8
Fast align 17 345+0.8
M + M+S+A+R+C 7 341+£0.8
en-fr  MGIZA++ 150 36.34+0.7
Fast align 17 36.1 £0.7
M + M+S+A+R+C 7 36.0+0.7
es-pt  MGIZA++ 140 37.14+0.8
Fast align 17 369 £0.8
M + M+S+A+R+C 7 36.6£0.8
pt-es MGIZA++ 150 39.1£0.8
Fast align 17 389+0.8
M + M+S+A+R+C 7 38.8+0.8
fi-en MGIZA++ 120 26.1 +£0.8
Fast align 14 250+0.8
M + M+S+A+R+C 6 239+0.8
en-fi  MGIZA++ 110 163 +0.8
Fast align 14 16.7+£0.8
M + M+S+A+R+C 6 157+0.8

Table 2: Comparison of BLEU scores and alignment times
in 6 language pairs with different aligners

en (agglutinative language—isolating language), and es—pt
(close languages).

The results of the experiments are presented in Ta-
ble 2. Our improvements allow the associative meth-
ods to beat Fast align in time. Alignments produced
with our improvements yield slightly lower scores than
those obtained with Fast align on French-English and
Spanish—Portuguese in both directions, but with no statis-
tically significant difference in each case as the confidence
intervals show. Unfortunately, on Finnish—English, in both
directions, our BLEU scores are significantly lower. This
may come from an insufficient timeout for Anymalign,
5 minutes, chosen for consistency across all experiments
reported here.

5. Conclusion

We  presented  multi-processing  implementa-
tions of the multilingual sampling-based alignment
method (Lardilleux et al., 2013) and of the hierarchical
sub-sentential alignment method (Lardilleux et al., 2012),
two associative methods which, by essence allow for this.
We introduced two approximations in the hierarchical
sub-sentential alignment method: we modified how to
decide the direction of split and we reduced the search
space. The removal of some unnecessary computations,
and the re-implementation of core components in C were
also introduced. We obtained considerable gains in time
so that the combination of these two associative methods
becomes competitive with probabilistic methods.

Some may argue that the comparison of a probabilis-
tic method running on one processor with an associative
method running on 4 cores is unfair. We claim on the con-
trary that it is fair because associative methods intrinsically
cater for this at no expense of the quality of their results.

164

6. Acknowledgements

This paper is a part of the outcome of research per-
formed under a Waseda University Grant for Special Re-
search Projects (Project number: 2015A-063). Thanks to
Chonlathorn Kwankajornkiet from Chulalongkorn Univer-
sity, Thailand, for her contribution in implementing the C
core component of Cutnal ign during her training period
in Waseda University.

7. References

Ayan, Necip Fazil and Bonnie J. Dorr, 2006. Going be-
yond AER: An extensive analysis of word alignments
and their impact on MT. In Proc. of COLING/ACL.

Brown, Peter F., Vincent J. Della Pietra, Stephen A. Della
Pietra, and Robert L. Mercer, 1993. The mathematics
of statistical machine translation: Parameter estimation.
Computational linguistics, 19(2):263-311.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith, 2013.
A simple, fast, and effective reparameterization of IBM
model 2. In Proc. of HLT-NAACL.

Gale, William A. and Kenneth Ward Church, 1991. Iden-
tifying word correspondences in parallel texts. In Proc.
of the workshop on Speech and Natural Language, vol-
ume 91.

Gao, Qin and Stephan Vogel, 2008. Parallel implementa-
tions of word alignment tool. In Software Engineering,
Testing, and Quality Assurance for Natural Language
Processing.

Gong, Li, Aurélien Max, and Francois Yvon, 2013. Im-
proving bilingual sub-sentential alignment by sampling-
based transpotting. In Proc. of IWSLT.

Heafield, Kenneth, 2011. Kenlm: Faster and smaller lan-
guage model queries. In Proc. of the 6th Workshop on
Statistical Machine Translation.

Koehn, Philipp, 2005. Europarl: A parallel corpus for sta-
tistical machine translation. In Proc. of Machine Trans-
lation Summit, volume 5.

Koehn, Philipp, Amittai Axelrod, Alexandra Birch, Chris
Callison-Burch, Miles Osborne, David Talbot, and
Michael White, 2005. Edinburgh system description for
the 2005 IWSLT speech translation evaluation. In Proc.
of IWSLT.

Lardilleux, Adrien, Francois Yvon, and Yves Lepage,
2012. Hierarchical sub-sentential alignment with Any-
malign. In Proc. of EAMT 2012.

Lardilleux, Adrien, Frangois Yvon, and Yves Lepage,
2013. Generalizing sampling-based multilingual align-
ment. Machine translation, 27(1):1-23.

Levenberg, Abby, Chris Callison-Burch, and Miles Os-
borne, 2010. Stream-based translation models for sta-
tistical machine translation. In Proc. of HLT-NAACL.

Och, Franz Josef and Hermann Ney, 2003. A system-
atic comparison of various statistical alignment models.
Computational linguistics, 29(1):19-51.

Zha, Hongyuan, Xiaofeng He, Chris Ding, Horst Simon,
and Ming Gu, 2001. Bipartite graph partitioning and
data clustering. In Proc. of int. conf. on Info. and Knowl-
edge Management.



