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Abstract 
We present methods and procedures designed for cost-efficient adaptation of an existing speech recognition system to Polish. The 
system (originally built for Czech language) is adapted using common texts and speech recordings accessible from Polish web-pages. 
The most critical part, an acoustic model (AM) for Polish, is built in several steps, which include: a) an initial bootstrapping phase that 
utilizes existing Czech AM, b) a lightly-supervised iterative scheme for automatic collection and annotation of Polish speech data, and 
finally c) acquisition of a large amount of broadcast data in an unsupervised way. The developed system has been evaluated in the task 
of automatic content monitoring of major Polish TV and Radio stations. Its transcription accuracy (measured on a set of four complete 
TV news shows with total duration of 105 minutes) reaches almost 80 %. For clean studio speech, its accuracy gets over 92 %. 
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1. Introduction 

Within the last 15 years we have been working on the 
development of a robust automatic speech recognition 
(ASR) system for Czech. Its recent version is capable of 
fairly accurate real-time speech recognition even if the 
lexicon size exceeds 500,000 words. It has been used in 
several applications, e.g. voice dictation programs, 
broadcast monitoring systems, or automatic transcription 
of a huge historical audio archive (Nouza et al., 2014). It 
has been a natural idea to utilize the existing modules and 
acquired experience to port the system to other Slavic 
languages.  

A few years ago we began to work on Slovak language, 
which is the most similar one. A prototype was presented 
in 2008 when it achieved 75 % word recognition rate  
(WRR) on a Slovak broadcast news task. The most recent 
version operates with WRR value around 86 % and it has 
been already deployed in several practical applications.  

The next language we decided to focus on has been 
Polish. It is partly understandable to Czech people though 
it has completely different lexicon and phonology. We 
have developed a set of procedures that allowed us to 
utilize the existing text and audio processing tools and 
even the Czech acoustic model to build a Polish ASR 
system within a relatively short period of one year. We 
have saved much human labor by automating the most 
tedious works, such as speech data collection, phonetic 
annotation and acoustic model training. Moreover, during 
the development we have used only data (texts and 
recordings) that are freely available on Internet, which 
also reduced the costs. In this paper, we present our 
approach and methods in more detail.   

 
2. State-of-the-art and related work 

With its approx. 40 million native speakers, Polish is the 
second largest Slavic language (after Russian). Yet, there 
is not much literature concerned with Polish speech 
recognition. Major scientific databases offer a rather 
small number of research papers published on that topic, 
including those dealing with small vocabulary tasks, such 

as (Z  et al., 2011) or (  and Brocki, 2007) . 
A large-vocabulary continuous speech recognition 
(LVCSR) system for Polish is presented in (Marasek, 
2003). The author used the open-source HTK toolkit to 
build an experimental system with a 20k-word lexicon 
and tested it on read speech recordings provided by 12 
speakers with average WRR around 87 %. Another 
LVCSR system, named Skrybot, is briefly described in 
(Pawlaczyk and Bosky, 2009). Its decoder is based on 
open-source Julius system and the authors state that its 
WRR was 73 % in an 5-hour test. (No information about 
the lexicon size and the test is provided.) A more recent 
approach to the development of a Polish dictation system 
for legal texts is described in (Demenko et al., 2012). 

Polish ASR has been investigated also by research 
teams from abroad. It is one of the 20 languages whose 
spoken data have been collected within project called 
Globalphone (Schultz, 2002). These data were later used 
to test a method for rapid development of language 
models (LM) in 5 Slavic languages, including Polish (Vu 
et al, 2010a). However, the most critical task in the 
development of any ASR system is the creation of an 
acoustic model (AM). a 
method for cross-lingual adaptation and unsupervised 
iterative training of a Polish AM. Their work was part of 
a project focused on automatic transcription of EU 
parliament talks. They used recordings of Polish 
representatives and interpreters together with official text 
documents to adapt an ASR system originally designed 
for Spanish to Polish. With a 60k word lexicon they were 
able to get close to 82 % WRR on that given task. 

Our approach described in this paper has a similar idea. 
We want to utilize the existing Czech ASR as a starting 
point from which the target Polish system is built in an 
iterative and almost fully automated way. Our goal is 
more ambitious because we want to create a system for 
transcription of TV and radio programs, where many 
speakers, various speaking styles and different topics can 
occur. The lexicon must be much larger (at least 250k 
words) and also the AM and LM need to be more flexible 
and robust.  
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5.1.3.  Segmentation matched to text  
This is the most essential procedure. It is used if we have 
an audio signal and a text that more or less corresponds to 
the content of the signal. In the optimal case, the text is 
verbatim transcription, but it can be just a brief summary. 
In any case, we want to find those parts of the signal that 
match (as well as possible) the provided text. These are 
searched by aligning the ASR output to the text via an 
algorithm proposed by Nouza et al (2013). The found 
segments are cut off (as in 5.1.2) and stored together with 
the matched text fragments in a StackList. The match 
score is computed via eq. (1). At this stage, we do not 
insist on perfect (100 %) match, as the segments will pass 
repeated decoding with a gradually improving AM later. 
Instead, we keep all the segments whose score is higher 
than a threshold (usually 70-80 %). The procedure is 
called DoMatchedSegmentation. 

5.1.4.  Automatic check and optional correction 
This procedure takes the matched segments and classifies 
them into 2 sets: In the first, there are the segments that 
achieved 100 % score. Their phonetic transcriptions are 
considered correct and hence they are moved to the AM 
training list (TrainList). The other are ordered 
according to their scores and prepared for optional 
manual inspection. This is the only instant where a 
human may (but does not need to) enter the automated 
process.  

In order to minimize human work we have developed a  
program whose interface is shown in Fig. 1. It utilizes the 
ordered list of imperfectly matched segments, and shows 
and plays them to the annotator. The words where the 
ASR output and the reference text differ are highlighted. 
The annotator just decides which is correct and clicks on 
it to fix the error. When needed, he/she types the correct 
word or modifies the pronunciation. If a segment contains 
speech which is not clear, it can be skipped or definitely 
removed from the list. The correction process is easy and 
fast. Moreover, it does not require a person who knows 
the language. Within an hour it is possible to check and 
correct several hundreds of speech segments, because 
most contain just 1 or 2 errors. The corrected segments 
are automatically added to the TrainList. The other 
remain in the StackList. In our schemes we name this 
procedure CheckAndCorrect.  

5.1.5.  Acoustic model retraining 
When the number of newly acquired (and annotated)  
segments in TrainList is sufficiently large, we add 
them to the previously collected speech data and run a 

procedure that retrains the AM using the standard HMM 
training tool. We denote this step as Retrain.  

5.1.6.  Switching between phoneme sets 
As one of our schemes utilizes the cross-lingual part, we 
need auxiliary procedures that make switching between 
two phoneme sets, one of the source language (SL) and 
another for the target one (TL). Usually, they are applied 
at the beginning and end of the bootstrapping phase. In 
the former case, we need to map all the phonemes from 
the TL (Polish in this case) to those of the SL with an 
existing AM (e.g. Czech). This approximation is only 
temporal and it is not much critical. We use the phoneme 
map proposed in (Nouza and Bohac, 2011). After its 
application, we get the Polish lexicon represented by 
Czech phonemes.  

When the bootstrapping phase is finished, we switch 
back to the original lexicon. All the phonetic annotations 
made within the phase are changed to the original Polish 
phonetic set, using the lexicon as a reverse look-up table. 

The two procedures are denoted as MapPhonemes and 
RemapPhonemes. 

5.2.  Data annotation and AM training schemes 

Here we present 3 schemes, each suited for a specific use.  

5.2.1. Iterative data annotation and AM training 
This scheme is applied in a situation when we have a 
large number of speech documents and each of them is 
associated with some text. The goal is to find the speech 
segments that match parts of the text, annotate them and 
use them for AM retraining. The scheme combines the 
basic procedures in an iterative loop. We suppose that at 
the start we already have an AM for the target language. 
At the end of each iteration, new annotated data are added 
to the training list and a new (better) AM is trained. With 
this AM we repeat the scheme either from the start (step 
1, i.e. a new segmentation) or for the already segmented 
files (step 2). The former is useful when the initial AM 
was trained on a small amount of data. The scheme is 
finished when the number of newly annotated segments is 
too small to run another iteration.            

 
IterativeRetraining: 
1 For each Document 

    DoMatchedSegmentation 

2 For each Segment from StackList 

    DoTranscription 

    CheckAndCorrect 

3 Retrain 

4 Repeat from step 1 or 2 

 

Fig.1 - Program to check transcribed sentences. One can easily compare ASR output, reference text and ASR produced phonetic 

transcription (including silence denoted as '-' and noises indicated by digits). Differences are highlighted. In this example, the first 

difference is due to wrongly typed word 'ana' (error in reference), the second was made by the ASR system (omitted 'a').   
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