
181

Cross-Lingual Adaptation of Broadcast Transcription System to Polish Language

Using Public Data Sources

Jan Nouza, Petr Cerva, Radek Safarik

Technical University of Liberec

Studentska 2, Liberec, Czech Republic

{jan.nouza, petr.cerva, radek.safarik}@tul.cz

Abstract
We present methods and procedures designed for cost-efficient adaptation of an existing speech recognition system to Polish. The
system (originally built for Czech language) is adapted using common texts and speech recordings accessible from Polish web-pages.
The most critical part, an acoustic model (AM) for Polish, is built in several steps, which include: a) an initial bootstrapping phase that
utilizes existing Czech AM, b) a lightly-supervised iterative scheme for automatic collection and annotation of Polish speech data, and
finally c) acquisition of a large amount of broadcast data in an unsupervised way. The developed system has been evaluated in the task
of automatic content monitoring of major Polish TV and Radio stations. Its transcription accuracy (measured on a set of four complete
TV news shows with total duration of 105 minutes) reaches almost 80 %. For clean studio speech, its accuracy gets over 92 %.

Keywords: speech recognition of Polish, broadcast monitoring, acoustic model training, cross-lingual adaptation

1. Introduction

Within the last 15 years we have been working on the
development of a robust automatic speech recognition
(ASR) system for Czech. Its recent version is capable of
fairly accurate real-time speech recognition even if the
lexicon size exceeds 500,000 words. It has been used in
several applications, e.g. voice dictation programs,
broadcast monitoring systems, or automatic transcription
of a huge historical audio archive (Nouza et al., 2014). It
has been a natural idea to utilize the existing modules and
acquired experience to port the system to other Slavic
languages.

A few years ago we began to work on Slovak language,
which is the most similar one. A prototype was presented
in 2008 when it achieved 75 % word recognition rate
(WRR) on a Slovak broadcast news task. The most recent
version operates with WRR value around 86 % and it has
been already deployed in several practical applications.

The next language we decided to focus on has been
Polish. It is partly understandable to Czech people though
it has completely different lexicon and phonology. We
have developed a set of procedures that allowed us to
utilize the existing text and audio processing tools and
even the Czech acoustic model to build a Polish ASR
system within a relatively short period of one year. We
have saved much human labor by automating the most
tedious works, such as speech data collection, phonetic
annotation and acoustic model training. Moreover, during
the development we have used only data (texts and
recordings) that are freely available on Internet, which
also reduced the costs. In this paper, we present our
approach and methods in more detail.

2. State-of-the-art and related work

With its approx. 40 million native speakers, Polish is the
second largest Slavic language (after Russian). Yet, there
is not much literature concerned with Polish speech
recognition. Major scientific databases offer a rather
small number of research papers published on that topic,
including those dealing with small vocabulary tasks, such

as (Z et al., 2011) or (and Brocki, 2007) .
A large-vocabulary continuous speech recognition
(LVCSR) system for Polish is presented in (Marasek,
2003). The author used the open-source HTK toolkit to
build an experimental system with a 20k-word lexicon
and tested it on read speech recordings provided by 12
speakers with average WRR around 87 %. Another
LVCSR system, named Skrybot, is briefly described in
(Pawlaczyk and Bosky, 2009). Its decoder is based on
open-source Julius system and the authors state that its
WRR was 73 % in an 5-hour test. (No information about
the lexicon size and the test is provided.) A more recent
approach to the development of a Polish dictation system
for legal texts is described in (Demenko et al., 2012).

Polish ASR has been investigated also by research
teams from abroad. It is one of the 20 languages whose
spoken data have been collected within project called
Globalphone (Schultz, 2002). These data were later used
to test a method for rapid development of language
models (LM) in 5 Slavic languages, including Polish (Vu
et al, 2010a). However, the most critical task in the
development of any ASR system is the creation of an
acoustic model (AM). a
method for cross-lingual adaptation and unsupervised
iterative training of a Polish AM. Their work was part of
a project focused on automatic transcription of EU
parliament talks. They used recordings of Polish
representatives and interpreters together with official text
documents to adapt an ASR system originally designed
for Spanish to Polish. With a 60k word lexicon they were
able to get close to 82 % WRR on that given task.

Our approach described in this paper has a similar idea.
We want to utilize the existing Czech ASR as a starting
point from which the target Polish system is built in an
iterative and almost fully automated way. Our goal is
more ambitious because we want to create a system for
transcription of TV and radio programs, where many
speakers, various speaking styles and different topics can
occur. The lexicon must be much larger (at least 250k
words) and also the AM and LM need to be more flexible
and robust.

182

183

5.1.3. Segmentation matched to text
This is the most essential procedure. It is used if we have
an audio signal and a text that more or less corresponds to
the content of the signal. In the optimal case, the text is
verbatim transcription, but it can be just a brief summary.
In any case, we want to find those parts of the signal that
match (as well as possible) the provided text. These are
searched by aligning the ASR output to the text via an
algorithm proposed by Nouza et al (2013). The found
segments are cut off (as in 5.1.2) and stored together with
the matched text fragments in a StackList. The match
score is computed via eq. (1). At this stage, we do not
insist on perfect (100 %) match, as the segments will pass
repeated decoding with a gradually improving AM later.
Instead, we keep all the segments whose score is higher
than a threshold (usually 70-80 %). The procedure is
called DoMatchedSegmentation.

5.1.4. Automatic check and optional correction
This procedure takes the matched segments and classifies
them into 2 sets: In the first, there are the segments that
achieved 100 % score. Their phonetic transcriptions are
considered correct and hence they are moved to the AM
training list (TrainList). The other are ordered
according to their scores and prepared for optional
manual inspection. This is the only instant where a
human may (but does not need to) enter the automated
process.

In order to minimize human work we have developed a
program whose interface is shown in Fig. 1. It utilizes the
ordered list of imperfectly matched segments, and shows
and plays them to the annotator. The words where the
ASR output and the reference text differ are highlighted.
The annotator just decides which is correct and clicks on
it to fix the error. When needed, he/she types the correct
word or modifies the pronunciation. If a segment contains
speech which is not clear, it can be skipped or definitely
removed from the list. The correction process is easy and
fast. Moreover, it does not require a person who knows
the language. Within an hour it is possible to check and
correct several hundreds of speech segments, because
most contain just 1 or 2 errors. The corrected segments
are automatically added to the TrainList. The other
remain in the StackList. In our schemes we name this
procedure CheckAndCorrect.

5.1.5. Acoustic model retraining
When the number of newly acquired (and annotated)
segments in TrainList is sufficiently large, we add
them to the previously collected speech data and run a

procedure that retrains the AM using the standard HMM
training tool. We denote this step as Retrain.

5.1.6. Switching between phoneme sets
As one of our schemes utilizes the cross-lingual part, we
need auxiliary procedures that make switching between
two phoneme sets, one of the source language (SL) and
another for the target one (TL). Usually, they are applied
at the beginning and end of the bootstrapping phase. In
the former case, we need to map all the phonemes from
the TL (Polish in this case) to those of the SL with an
existing AM (e.g. Czech). This approximation is only
temporal and it is not much critical. We use the phoneme
map proposed in (Nouza and Bohac, 2011). After its
application, we get the Polish lexicon represented by
Czech phonemes.

When the bootstrapping phase is finished, we switch
back to the original lexicon. All the phonetic annotations
made within the phase are changed to the original Polish
phonetic set, using the lexicon as a reverse look-up table.

The two procedures are denoted as MapPhonemes and
RemapPhonemes.

5.2. Data annotation and AM training schemes

Here we present 3 schemes, each suited for a specific use.

5.2.1. Iterative data annotation and AM training
This scheme is applied in a situation when we have a
large number of speech documents and each of them is
associated with some text. The goal is to find the speech
segments that match parts of the text, annotate them and
use them for AM retraining. The scheme combines the
basic procedures in an iterative loop. We suppose that at
the start we already have an AM for the target language.
At the end of each iteration, new annotated data are added
to the training list and a new (better) AM is trained. With
this AM we repeat the scheme either from the start (step
1, i.e. a new segmentation) or for the already segmented
files (step 2). The former is useful when the initial AM
was trained on a small amount of data. The scheme is
finished when the number of newly annotated segments is
too small to run another iteration.

IterativeRetraining:
1 For each Document

 DoMatchedSegmentation

2 For each Segment from StackList

 DoTranscription

 CheckAndCorrect

3 Retrain

4 Repeat from step 1 or 2

Fig.1 - Program to check transcribed sentences. One can easily compare ASR output, reference text and ASR produced phonetic

transcription (including silence denoted as '-' and noises indicated by digits). Differences are highlighted. In this example, the first

difference is due to wrongly typed word 'ana' (error in reference), the second was made by the ASR system (omitted 'a').

184

185

