Automatic differentiation between normal and disordered speech
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Abstract

One of the most important elements of everyday life is communication. The most natural way of it is speech. Unfortunately, there are
many diseases which disturb fluency and intelligibility of speech. Such disorders often lead to emotional and psychological problems
related to social interactions. Early diagnosis is crucial to detect and minimalize results of such disorders. To make this process easier,
several automatic algorithms have been proposed by scientists. In this paper, we investigated two methods: Envelope Modulation Spectra
(EMS) and Multidirectional Regression (MDR). We applied both techniques to Polish language and evaluated their performance on
distinguishing Polish speakers with and without speech disorders. Our experiments showed that each method is efficient in such a
discrimination task. Among all 48 EMS characteristics 45 differed significantly both groups of speakers. MDR recognized disordered

speech with almost 99% accuracy for several words.
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1. Introduction

Verbal communication is one of the most important
aspects of daily life. Unfortunately, many people suffer
from diseases that degrade their speech abilities. Inability
to speak properly leads to impoverished interactions with
the society and can be the reason of social exclusion (Creer
et al., 2013; lida & Campbell, 2003).

A dysarthria is one of the most common speech disorders
and is characterized by the dysfunction of muscles used in
speech production process. Kain et al. (2007) describe it as
“an impairment in one or more of the processes of speech
production: respiration, phonation, resonance, articulation,
and prosody”. There are several types of dysarthria:
spastic, hyperkinetic, hypokinetic, ataxic, flaccid and
mixed, among others (McCaffrey, n.d.) and each of them
is characterized by different symptoms (Kain et al., 2007;
McCaffrey, n.d.).

Dysarthric speech is not only less intelligible but also 10-
17 times slower than normal speech (Rudzicz, 2013).
Hence several attempts to develop techniques improving
the verbal communication of affected people have been
conducted. One of the existing approaches is
supplementation: topic, alphabetic or combined (Hustad et
al., 2003). A speaker points out the topic of its speech or
first letter of the word he/she would use — or both of them.
This method requires the user to use additional equipment
— such as keyboard or pointer. In case person suffers also
from physical disabilities, the interaction with keyboard
could be even 300 times slower than for healthy people
(Rudzicz, 2013), which limits the applicability of the
method. Another approaches focus on enhancing the
speech signal quality, which can improve communication
between humans and also between human and computer
(Rudzicz, 2013).

For people with reduced mobility, the second approach
is of the great interest. The possibility of using voice to
control devices (such as TV, mobile phones, computers,
lamps) can ease the daily life significantly (Parker et al.
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2006). Unfortunately, diversity of disorders in dysarthria
is so wide that standard automatic speech recognition
(ASR) tools fail (Caballero-Morales & Trujillo-Romero,
2014) in such tasks.

One possible solution could be to recognize the type of
speech disorders and based on that choose the algorithm
which gives the best results for this particular class of
disorders. There are several methods that performs speech
disorders differentiation (Lansford & Liss, 2014; Rosen et
al., 2010; Sapir et al., 2010; Vogel et al. 2011). However,
many of them require time-consuming preparation of
stimuli by hand. For our purposes, we are only interested
into automatic solutions, hence we investigated two
techniques that do not require human assistance.

First of them is called Envelope Modulation Spectra
(EMS) and was developed by Liss, LeGendre & Lotto
(2010). It measures signal’s features related to amplitude
envelope and give 100% of recognition between normal
and dysarthric speech.

The second algorithm applies multidirectional regression
(MDR) and was invented by (Muhammad et al., 2012). It
gives 99% accuracy in recognizing normal and disordered
speech for arabic digits. Please note that patients suffer
from nodules, cysts, polips etc., not from dysarthria.

In next sections we will present implementation of these
two methods for Polish language.

2. Methods
2.1 Envelope Modulation Spectra (EMS)

The signal is filtered for 7 octave bands with central
frequencies ranging from 125 Hz to 8 kHz. For every band
(as well as for whole signal) modulation envelope is
extracted (half-rectification and lowpass filter with cutoff
frequency of 30 Hz, downsampling to fs=80Hz). Then,
512-point FFT is applied (with Tukey window) and the



Characteristics Description Abbreviations
The frequency of the peak in the spectrum with the highest RF_whole_signal, PF_12 5,
. . . . . PF 250Hz, PF_500Hz,
Peak frequency | amplitude. The period of this frequency is the duration of the - =
predominant repeating amplitude pattern RE_L000Hz, FF_2000E,
PF_4000Hz, PF_8000Hz
The amplitude of the peak described above (divided by overall £ whele signal, B 1256z,
. - : S PA 250Hz, PA 500Hz,
Peak amplitude | amplitude of the energy in the spectrum). This is a measure of — —
how much the rhythm is dominated by a single frequency s R
PA 4000Hz, PA 8000Hz
. : - . E hole_signal
Energy in the region of 3—6 Hz (divided by overall amplitude 3_6 whole: signd,
7 : E3 6 125Hz, E3 6 250Hz,
of spectrum). This is roughly the region of the spectrum, around - —
E3-6 P < ot : E3 6 500Hz, E3 6 1000Hz,
4 Hz, that has been correlated with intelligibility and inversely E3 6 2000Hz E3 6 4000
correlated with segmental deletions e Z, 53 9 Z
E3 6 8000Hz
Energy in spectrum from 04 Hz (d1v1.ded by overall ampl1t1_1de B4_whole signal, B4_125Hz,
of spectrum). The spectrum was split at 4 Hz, because pilot - - —
B4 250Hz, B4 500Hz,
Below4 work demonstrated that the amount of energy below and above - -
: . B4 1000Hz, B4 2000Hz,
4 Hz was relatively uncorrelated across a variety of speakers B4 4000Hz B4 8000H
and sentences = Gt z
A4 whole signal, A4 125Hz,
Aboved Energy in spectrum from 4-10 Hz (divided by overall | A4 250Hz, A4 500Hz,
amplitude of spectrum). A4 1000Hz, A4 2000Hz,
A4 4000Hz, A4 8000Hz
R4 whole signal, R4 125Hz,
. R4 250Hz, R4 500Hz,
Ratio4 Below4/Above4 R4_1000Hz, R4 2000Hz,
R4 4000Hz, R4 8000Hz

Table 1. EMS characteristics, their descriptions and abbreviations used in this paper. Descriptions are taken from (Liss et al., 2010)

spectrum is converted to decibels for frequencies up to
10Hz. Based on six EMS characteristics (see Table 1)
calculated for each obtained spectrum and for the whole
signal, 48 dimensional feature vector is created. All
vectors are then divided into two groups representing
speakers with and without disorders. T-Student test is
launched to find out which of the features are the most
significant to differentiate between these two groups.

2.2 Multidirectional Regression (MDR)

Each signal is divided into 20ms-length frames using
Hamming window (with overlapping of 10ms) and FFT is
applied to each frame. The obtained spectrum is then
filtered with 24 triangular mel filters (according to the
equation 1:

m = 2595log,, (1 +L), m=12,..24 (1)
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where f'is the center frequency of the filter.
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After filtration, all values in the frames of one signal are
converted to the logarithmic scale. After this step, a matrix
called TF Pattern is obtained — with 24 rows and T columns
(where T is equal to number of frames for the signal). The
element in i-th row and j-th column is denoted as ¢; and
presents value obtained for i-th mel filter and j-th frame.
Then, 3-point linear regression is applied to the matrix, in
four directions: along time, along frequency and along TF
pattern at 45° and 135° (see equations 2-5).
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where:

t takes values from 1 to T for the analyzed signal; n takes
values from 1 to 24 (equal to the number of mel filters); ¢
is taken from TF pattern matrix (addressed with
appropriate indices).

Every regression is then transformed using discrete
cosine transformation (DCT) according to the equation 6:

24 ;
i
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p=1

(6)

1=12,..,12

Finally, we get a 48-elemental MDR vector as follows
(equation 7):

MDRt=[dct§ime, dct{req, det?=, dctt135], (7)

These vectors are an input for training GMMs to
discriminate between normal and disordered speech.

3. Experiments
3.1 Implementation

EMS algorithm was implemented using MATLAB
environment. Procedure generated a matrix consisted of 48
columns (each column represented one feature from EMS
characteristics) and number of rows equal to the number of
recordings. The obtained matrix was used in the statistical
analysis.

MDR algorithm was implemented using Python
language and features vector for each recording was
calculated. Two GMM models (representing speech with
and without disorders) were trained and tested using HTK
Toolkit (Young et al., 1997).

3.2 Testing EMS method
3.2.1 Recordings

The database used for the evaluation contains recordings
from nine speakers. Four speakers (two men and two
women) are healthy subjects and five speakers (four men
and one woman) have speech disorders, classified by
phonologist as mild, moderate and severe dysarthria,
dyslalia and articulation disorders. Every speaker recorded
at least 10 times numbers from 1 to 10 and 10 polite
requests. Please note, number of recordings between
speakers was not equal. In total, the database consisted of
2002 recordings.
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Each recording was saved in .wav format — with different
sample rates (according to the devices used by speakers)
but with the same bitrate of 16 kbit. However, different
sample rates were not the problem because before any test
recordings were downsampled to the sampling frequency
of 80Hz (see Section 2.1). Due to the fact, that our subjects
recorded themselves on their own, some of the recordings
appeared to be overloaded. A Student t-test for
independent samples was applied to verify whether there
were statistically significant differences between the
groups of overloaded and non-overloaded recordings

Indeed, for 40 from 48 EMS characteristics significant
differences were observed. That is why overloaded signals
were excluded from the statistical analysis. Finally, 1725
recordings were used.

3.2.2 Procedure

Features vectors were automatically computed and saved
in Excel file using algorithm implemented in MATLAB.
Results were divided into two groups — samples of speech
with and without voice disorders. Student t-test for
independent samples was launched to find out if any of 48
characteristics differ significantly between groups.
Additionally, effect size (ES) was computed.

3.2.3 Results and discussion

Only three (from 48) characteristics do not differ groups
significantly. These are: PA 125Hz (with p=0,778),
R4 whole signal (p=0,375) and R4 250Hz (p=0,134).
Every other characteristics has p<0,05, so it differs groups
significantly. More information is given by the ES. The
largest ES value — the largest difference between groups.
In the table 2 we present 10 EMS characteristics with the
largest ES-s (ES>0,9) as well as all three characteristics
which were not significantly different between groups.

Characteristics t p SingflcitS)
PA 2000Hz |-23,240| ,000 1,228
B4 2000Hz [-22,961| ,000 1,213
PA 1000Hz (-20,191| ,000 1,067

B4 whole signal |-18,358| ,000 0,970
B4 125Hz -18,346| ,000 0,969
B4 1000Hz |-18,327| ,000 0,968
PA_whole signal |-18,307| ,000 0,967
E3 6 125Hz |-17,782| ,000 0,939
A4 125Hz -17,734| ,000 0,937
B4 4000Hz |-17,159| ,000 0,906
R4 250Hz -1,499 | ,134 ---
R4 whole signal | ,886 | ,375 s
PA 125Hz 2282 | 778 -

Table 2. Ten EMS characteristics with the largest effect
sizes and all three characteristics which were not
statistically significant. T-test was launched between
groups of normal and disordered speakers.



One can notice that seven characteristics are related to
energy and three to peak amplitude — no characteristics of
peak frequency. 125 Hz is the most common center
frequency for the octave band while 250, 500 and 8000 Hz
do not appear in table 2. We can make an assumption that
the most interesting information is carried in the lowest
and moderate octave bands and is related to energy and its
amplitude rather than frequency. Our next algorithm will
focus on measuring energy more detailed (using not octave
but 1/3 octave bands) and trace changes in energy in time
(using short time frames instead of full-time signal). It
should give us more information about differences
between speakers with and without disorders making the
differentiation procedure more reliable and unambiguous.

3.3 Testing MDR method
3.3.1 Recordings

Initially, recordings were identical as in the EMS
method. However, pre-test results were not satisfying. We
noticed a disproportion between number of recordings of
healthy and unhealthy speakers. That is why we added 3
more people with normal speech (two men and one
woman), having finally 2444 recordings — from seven
healthy and five unhealthy speakers.

All recordings were stored as mono .wav files with
sample rate of 16 kHz and bitrate equal to 16 kbit.

3.3.2 Procedure

Recordings were divided into two groups: speech of
people with and without disorders. For each frame of each
recording, 48-elemental features vector was computed
based on MDR algorithm. Using HTK Toolkit, two GMM
models were trained — one for normal_speech and one for
disordered_speech. For each class different k values (k is
the number of mixtures used in GMM model) were used
(k=1,2,4,8, 16,32, 64, 128,256 and 512).

Experiment was launched using leave-one-out method.
Recordings of one speaker were used as test set, and the
remaining samples of other speakers were used as training
material for GMM models. The procedure was repeated for
each speaker, and the evaluation results were averaged.

3.3.3 Results and discussion

The discrimination procedure was not satisfactory for
three speakers: speaker no. 5, 7 and 10. After analyzing the
recordings, we found out that the problem is related to the
quality of their recordings. Speaker 5 breathed loudly and
strong ‘windy pops’ could be perceived in almost each of
his recordings. Speakers 7 and 10 recorded themselves
being away from a microphone — reverberation of a room
is audible. Every other speaker recorded itself close to the
microphone, so we find the reverberation could be the
problem. Hence, we excluded those 3 speakers from
further analyses.

Mean for all other speakers for all words was 96,4% (for
GMM with k=4). In Table 3 we present global results of
algorithm performance, including hits, misses, false
alarms and correct rejections. The table answers the
question ‘Did the subject have normal speech?’. The
probability of hits was 98% and of correct rejections —
93,2%.
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Algorithm Performance
Normal Disordered
£ Normal Hit = 98% Miss = 2%
D
§
n 7 False alarm | Correct Rejection
Disordered = 6.8% —932%

Table 3. Results of algorithm performance regarding the
question "Did the speaker have normal speech?"

We also studied every word separately. The best results
were obtained for digits 4 and 6, for GMM with k=16 in
both cases. For digit 4 recognition was 98,9%, for digit 6
—99,5% (see Table 4).

Based on the results, we conclude that the choice of the
spoken utterance can have influence on discrimination
performance. In case of numbers four and six, we assume
that good recognition rate is related to the presence of
fricatives disordered speakers distorted their
pronunciation. Another thing is the presence of stop
consonant ‘t” in the Polish digit 4. People with speech
disorders tend to omit stop consonants and do not speak
them (Rudzicz, 2013).

Speakers
Digit
S2 S3 S4 S8 S9
4 100,0 100,0 100,0 | 100,0 100,0
100,0 100,0 95,5 100,0 100,0
S13 S14 S15 S16 Mean
4 100,0 90,0 100,0 | 100,0 98,9
100,0 100,0 100,0 | 100,0 99,5

Table 4. Accuracy in % of GMM with k=16 in
recognition of both (normal and disordered speakers) for
Polish digits 4 and 6.

4. Conclusion and future work

Experiments showed that automatic differentiation
between people with and without speech disorders is
possible and effective. Only 3 EMS characteristics (from
total of 48) did not differ groups significantly. In the MDR
method the probability of >98% of good assignment could
be achieved using specific words.

On the other hand, it was shown how important is careful
preparation of recordings’ database. EMS method —
because of its nature, basing on amplitude envelope — was
very sensitive for overloads in recordings. MDR algorithm
gave unsatisfying results for recordings with pops — as well
as for those ones where people stood too far from a
microphone. But not only technical aspects are important,
words used by people are also a crucial factor. Several of
them are very reliable and perfectly show differences
between speech with and without disorders, while the
others give almost the same results for both groups.

We are aware that more complex experiments with larger
number of speakers, and better balanced database would



be more beneficial. However, the nature of problem is
making such experiments difficult to perform. People with
speech disorders (also with motor impairments) have
difficulties to record large amount of data and to control
their way of speaking. To simplify the process we decided
to allow them to record themselves at home, where they
can feel more comfortable. Such approach resulted in
larger amount of recorded data for each user but at the cost
of the lower quality of recordings. Nevertheless, it was
difficult to find representative number of users for
different speech impairments. That is why we could not
perform tests to find out if there were any significant
differences between various types of disorders.

Our next goals are as follows:

- Improve recorded signals using automatic algorithms

for noise detection and removal

- Investigate and modify algorithms of voice activity

detection to work well in presence of non-stationary

noise made by the speaker (such as loud breathing, noise

made by wheelchair, among others). The aim is to detect

when the speech is present and only then run

discrimination process.
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