Auto-correction of Consumer Generated Text in Semi-Formal Environment

Lipika Dey*, Gargi Roy"

*TCS Innovation Labs, Delhi, {lipika.dey, roy.gargi} @tcs.com

Abstract

This paper presents a framework to identify noisy words along with their correction scheme and identification of domain specific terms
for consumer generated text in semi-formal environment. Semi-formal environment is writing in a work environment such as within an
enterprise to communicate with peers about work. Text produced in this environment does not contain slang, icons and shortening of
words, phrases. However, these kind of text suffers from spelling mistakes, typographical errors, irregular use of punctuations and few
other types of errors which are caused by the extraction procedures of the text from several applications such as email clients, web portals
etc. The framework presented in this paper cleans the text to be analyzed, identifies and categorizes several kinds of error and domain
specific words from unknown words based on some patterns and word distributions over the text. The correction scheme is developed
with human supervision and the framework is run on huge data set with manual evaluation being satisfactory.

1. Introduction

Most of the text generated in informal text environment
(non-work related communication) is noisy consisting of
spelling mistakes, random abbreviation of words, random use
of upper case, space and punctuations. However, work re-
lated writing generated within an enterprise/organization for
internal work context, emails generated to communicate with
colleagues, team mates can be considered as semi-formal text.
Because, these texts generally do not contain very high degree
of spelling mistakes, idiosyncrasies and arbitrary use of punc-
tuations, spaces, and unnecessary use of upper case. Also,
these kind of texts do not contain arbitrary use of symbolic
icons such as smilies, shortened words and phrases such as
writing *4u’ instead of *for you’. However, semi-formal texts
also suffer from typographical errors, grammatical errors and
more over they may contain abbreviations of domain words
and several other types of errors caused by the process of text
extraction from several web sources.

So, in this work, we have developed a framework for
text generated in semi-formal environment with automatic rule
based correction facility for identified erroneous words along
with the extraction of unknown (to framework) but domain
specific words from text which should not be corrected. The
unknown and erroneous words are identified through matching
the words against dictionary. We are not recognizing gram-
matically incorrect words which do exist in the dictionary, for
example, ambiguity between 'form’ and ’from’. Any English
dictionary can be used in this framework. The framework
first extracts the consumer generated text from different web
sources such as email client, web portal then pre-process the
text to eliminate several types of noise including errors intro-
duced in the text extraction process. Then the text is tokenized
and unknown words are segregated. The unknown words are
then categorized based on some observed patterns of letters,
combination of upper and lower cases in the word. Among the
categorized unknown words few are marked as domain spe-
cific words which are not corrected and few are denoted as
actual error to be corrected based on some insights considered
and frequency distribution of the words across the text. Do-
main specific words are used to extend the dictionary and there
by enhancing the framework’s performance. The framework
then adopts a rule based correction policy to generate sugges-
tion(s) for the actual erroneous words. The correction policy
is designed in such a way that it does not require much com-
putational overhead in average case. The framework has been

203

executed on two data sets collected from a financial organi-
zation and from an enterprise. More than 7,72,000 words are
analyzed and suggestions are generated accordingly. We also
manually evaluated the performance of the framework which
is quite satisfactory.

The paper is organized as follows. Next section contains
brief literature and third section describes the overview of the
whole framework. Unknown word analysis and rule based
correction policy along with evaluation is presented in section
fourth and fifth respectively. Finally the paper is concluded.

2. Background

Literature consists of several study for noisy text process-
ing and correction, the text being generated from traditional
transcriptions of speech, text obtained by using OCRs on text
images or text gathered from web sources such as web pages,
social media, SMS etc. (Kukich, 1992) presents a nice survey
on methodologies for detecting and correcting spelling errors
in text. (Clark, 2003) presents a machine learning methodol-
ogy using generative models and a noisy channel method for
pre-processing of very noisy text. A system called ISSAC has
been represented in (Wong et al., 2006) which corrects spelling
errors, restores cases and expands ad-hoc abbreviations. They
used an integrated scoring model for pre-processing noisy text.
Work has also been done on OCR errors (Nartker et al., 2003),
ASR errors (Sarma and Palmer, 2004) and output of SMS text
(Choudhury et al., 2007). Opinions are mined from the noisy
text by first cleaning the data with domain expertise in (Dey
and Haque, 2009). Apart from text cleaning, few spelling cor-
rection methods have been proposed in (Hodge and Austin,
2001) and (Elmi and Evens, 1998) where the later presents
a context based spell correction. (Mikheev, 2002) presents
an approach for disambiguation of capitalized words in posi-
tions where capitalization is expected, sentence boundary dis-
ambiguation and identification of abbreviations. However, our
approach cleans the text gathered from semi-formal environ-
ment and identifies several types of errors along with domain
specific words using word distribution and patterns which are
equally unknown to the framework. The domain words are not
corrected instead used for extending dictionary and different
types of errors are identified and accordingly correction policy
have been developed for different types.

3. Overview of the framework

The framework consists of several modules which perform
assigned tasks. The overview of the framework is depicted

Extraction of text
from source

Pre—processing of text,
Text splitting info documents

Dictionary

Matching against
dictionary

Text tokenization

‘ Segregation of unknown words

Unknown words set _

Categorization of unknown
words based on patterns

! '

Error words Non-erroneous domain words
not in dictionary

‘ Rule based correction of error words ‘

Figure 1: Overview of the framework.

in Figure 1. At first consumer generated texts are extracted
through import facility of the source applications where the
text has been generated. Once text is imported it is then pre-
processed which is first splitting the texts into documents ac-
cording to their time stamps, unique identifiers and other meta
information such as *To’, "From’, *Subject’, 'Body’ headers in
case of email data. The pre-processing also includes identify-
ing and cleaning of noises embedded in the text and introduced
by the import process. Details about each task performed by
the framework is discussed in the next section.

In next phase, the cleaned text is tokenized and from the
tokens word tokens are extracted and matched against the dic-
tionary to construct a set of unknown words (which are not
contained in dictionary). Once unknown words are segregated,
they are categorized to error words which need correction and
domain specific words which should not be corrected. The rec-
ognized domain specific words are also used to extend the ex-
isting dictionary to enhance the performance of error identifi-
cation. The categorization of unknown words are done using
observed patterns and word distributions (with human supervi-
sion) and then the error words are corrected using a rule based
correction policy.

4. Analysis of unknown words
4.1. Pre-processing and segregating unknown words

The collected text has several kinds of errors including
typographical error, import error and human error. Typo-
graphical error includes spelling mistakes, missing full stop
between sentences, missing space after punctuations. These
kinds of errors are shown in the following text snippet from
the original data highlighting the error in italics. “account
for the entrepreneurThe entrepreneur gets a professional on-
line shop..One saves a seperate bookkeeping system and
the hassle..to college tuition for our kids or a skiing holi-
day.What if a customer could..”. Other than typographical
errors, several other kinds of errors are introduced when the
text is extracted from different web sources through appli-
cation specific import facility which often includes program-
ming code fragment, omits few line breaks, omits/misplaces
spaces etc. Following are text snippets showing import er-
ror in italics. ” company by a ‘face to face’ skyping-,

video- , or other life conference..Succession Planning
Issuee European Clients that en-
joyed..” Although the text is generated in semi-formal en-
vironment, the text may contain few basic smilies for work
purpose, such as ”..App (ratingstars, ®®, send email to their
emailadress to grant opportunity to reply.”

In case of analyzing email data, the framework removes
signatures by identifying few markers in each line followed
by lines containing words such as Regards’, Best Regards’,
’rgds’, *Thanks’, *Thanks and Regards’, ’Best regards’ etc.
These markers includes ’Ph:-’, ’Email:-’, *mailto:’, ’Cell:-’,
"Website:” etc. These markers may occur in different order in
each line. Many a times signatures contain symbol pattern such
as "=====——=====" followed by extra information gener-
ated by few types of mail clients. Those cases are also con-
sidered for identification and removal of signatures from email
data.

The human error occurred due to some activities done on
the text. In our data, some chunk of text data have been gener-
ated through copying multiple piece of text written by several
people in the work context. During the copy-paste and merg-
ing actions of different text pieces contained in excel cells, er-
rors occur as missing space or punctuations such as “design
a wind turbine that generates both electricity recovers energy
from the sun and produces waterBudget: to start with concep-
tion and tests 100.000€..”. For tokenization of such noisy text
we used twitter nlp tokenizer (O’Connor et al., 2010; Owoputi
et al., 2012; Owoputi et al., 2013) as it handles several types
of noise such as splitting at punctuations, spaces, not splitting
at’-’, handle missing space between proper sentences. Further
details on twitter npl can be found in the given references.

However, as twitter nlp handles issues of text generated
in informal environment consisting of emoticons, symbols, it
is not fully usable for semi-formal environment. For exam-
ple, during tokenization of the text snippet ”..they need and
they want.The simplicity of this..”, twitter nlp outputs 't.7°
as tokens and there by effecting tokenization of surrounding
words. Similarly tokenization of "Huge prospects databaseAs-
sets:Database:tokenization..” contains *:D’ as a token (be-
cause this is character symbol of a smiley icon) and instead
of recognizing ’databaseAssets’, *Database’ as tokens it gives
tokens as ’databaseAssets’, :D’ and ’atabase’. It also recog-
nizes icons as tokens. Hence, we have handled such cases by
identifying and introducing according characters in the text be-
fore tokenization to avoid such scenarios such as introduces a
space character after ’:’, ’t.” "0.”, W’ so that when the tokenizer
splits at the space desired tokens for an semi-formal environ-
ment are obtained. However, texts are not splitat ’-’, ’_’ as two
words concatenated with ’-’ essentially indicates one word in
English language and we assume the words concatenated with
>’ are of names of different entities such as file name. Existing
code snippets (import error) are also cleaned from text such as
removing ’ ’, *=>’ and replacing them with space for
proper tokenization.

After tokenization, the tokens of special characters are dis-
carded and word tokens (excluding tokens of day and month
names) are further analyzed for detecting unknown words
which include domain specific words and error words. Un-
known words are obtained by matching the words against dic-
tionary and if a word is not contained in the dictionary then it
is marked as unknown.

204

4.2. Patterns of unknown words

Once the unknown word set is obtained, the words are an-
alyzed to identify error words and possible domain specific
words using observed patterns. Unknown words are catego-
rized into five different types based on their patterns which are
as follows.

Type-1: Unknown word having all lower case letters, named
as All Lower. Example includes ’simillar’, ’demopgraphic’,
"featue’ etc.

Type-2: Unknown word having all upper case letters, named
as All_Upper, for example, "WOW’, "WIFI’, " BENEFIT’ etc.

Unknown word having a combination of lower and up-
per case letters, named as Multi_Caps. This type of unknown
words are further categorized into three groups which are as
follows.

Type-3: Unknown word having single upper case letter fol-
lowed and preceded by lower case letters, named as Sin-
gle_Upper_in_Middle. This type of unknown words have lower
case letters in beginning an end positions. Examples include
’bothExample’, ’situationWe’, ’clientsManage’ etc.

Type-4: Unknown word consisting of an upper case letter
in the starting position, for example, 'Facebook’, *Google’,
’Kinect’ etc. This type of unknown words are called Ini-
tial_Upper.

Type-5: Unknown word comprising of random mixing up
of multiple upper case and lower case letters are called
Multi_Caps and example includes, ’'PayPal’, *WhatsApp’,
’BankOnLine’, 'momentsWOWs’, 'PRODUCTSEveryone’,
"SMESs’ etc.

The procedure to identify different types of unknown words
based on their pattern is depicted in Algorithm 1.

4.3. Identifying errors and domain specific words

To identify the domain specific words over actual erroneous
words, the distribution of the unknown words across the text
along with their patterns are considered with few intuitions.
The intuitions considered are as follows.

1 : Same error does not occur uniformly

Iy : When words are written in upper case in semi-formal en-
vironment that implies special significance/importance

I3 : When multiple versions of spelling of an unknown word
exist across text then the word is likely to be correct

Considering I, distributions of unknown words over mul-
tiple documents (whose content texts are generated by different
persons) are analyzed and we found that the unknown words
having uniform distribution across the text are actually not er-
ror words. Figure 2 shows the uniform distribution of such
unknown words such as ’facebook’, "Internet’, ’google’, *app’,
’smartphone’ etc. which are correct words and used to enhance
dictionary. The distribution is uniform as the y-axis denotes
document id, it can be seen that the aggregate values of the
occurrence of the words is approximately equal to the number
of documents and lesser slopes denote more total number of
occurrence. On the other hand, typographical errors generally
occur non-uniformly. Figure 3 shows the non-uniform distri-
bution of unknown words which are mostly erroneous, for ex-
ample, ’evironment’, ’seperate’, 'Immediatly’, *fullfill’ etc.

I5 has been considered with the insight that in a semi-
formal environment lot of work related words and phrases are
abbreviated to only upper case letters while communicating
with peers or team members within an organization which are
domain specific terms and should not be attempted to rectify.

205

1800
1600
1400
1200
1000
800
600
400
200
0

Document Id

NI DO R P DAy A A
N R E R PP RS S

‘Word Frequency

mfacebook ¢ online
Minternet atm

google
® european

ASME »app
website X email

smartphone

Figure 2: Unknown words having uniform distribution over
repository-these are mostly correct words.

1800
1600 =

1400 W evironment

seperate
fulfi

A situationWe

» eventsThis
entrepreneurThe

M Componies
Fulfilment

® Immediatly
AutoMateFinancial

X iCloud

1200
1000

Document Id

2 3 4

Word Frequency

Figure 3: Unknown words having non-uniform distribution
over repository-can be observed mostly as erroneous.

For example, 'BLE’ is abbreviated for "Bluetooth Low En-
ergy”, ’SOS’ stands for ”Safe Or Secure”, "MAIS’ is for "Multi
Actor Impact Simulation”. On the other hand, few other words
in upper case which are not abbreviated but having significance
are "START-UP’, "HOST-TO-HOST’, ’EMAIL’, *OFFLINE’
etc. Next section presents the evaluation results of considering
these insights while measuring performance of the framework.

Apart from the word distribution, existence of the several
versions of the unknown words across the tex are also com-
puted considering /3 to find unknown but non-error words. For
example, on-line word can have multiple versions such as ’On-
Line’, ’Online’, ’online’ and WI-FI word can occur in several
forms such as 'wifi’, "WiFI’, "WIFI’, *WiFi’, Wifi’. These
multiple versions of WI-FI are not confined with a single file
but among seven files, similarly the multiple versions of on-
line word is distributed over 260 files. These kinds of words
having uniform distribution are entered in the dictionary to ex-
tend it.

5. Rule based correction and evaluation

This section presents the rule based correction policy and
the evaluation of the framework performance in terms of ac-
curacy of identifying proper erroneous words and domain spe-
cific words along with the suggestions generated for the error
words.

5.1.

Different correction policies have been adopted for differ-
ent kinds of erroneous words. For type-1 error i.e. All_Lower,
we have computed its nearest neighbor word in the dictionary
using minimum Levenshtein distance (Levenshtein, 1966).
The corrections for the error words ’simillar’, ’"demopgraphic’,

Rule based correction policy

Table 1: Unknown words of several types and their corrections

suggested using the rule based corrections
Type: All Lower Type: Single_Upper_in_Middle
Unknown word: Suggested correction|Unknown word: Suggested correction
evironment: environment eventsThis: events This
seperate: separate servicesEmployees: services Employees
uncomplicadted: uncomplicated viewLess: view Less
regsitration: registration transactionWhat: transaction What
simillar: similar developerAnd: developer And
continuus: continuous consumersImprove: consumers Improve
fullfill: fulfill forecastLeverage: forecast Leverage
remeber: remember bugsSuch: bugs Such
produtcts: products informationTransmit: information Transmit
recuitment: recruitment entrepreneurThe: entrepreneur The
assistent: assistant itemSellers: item Sellers
Type: Multi_Caps Unknown word Suggested corrections]
TibcoVendor Tibco, TibcoVendor, Vendor]

T : crowdfundings, crowdfundingsInterim,
crowdfundingsInterim

lnteriml{/I
[Auto, Mate, AutoMate,

Financial, AutoMateFinancial]

AutoMateFinancial

iCloud [i, iCloud, Cloud]

ProvisionsPOS [Provisions, P, PO, POS, ProvisionsPOS]
BigData [Big, Data, BigData]

FarmVille [Farm, Ville, FarmVille]

SMEOrange [S, SM, SME, SMEOrange, Orange]
OnLine [On, Line, OnLine]

DropBox [Drop, Box, DropBox]

TripAdvisor [Trip, Advisor, TripAdvisor]

"featue’ are given as ’similar’, ’"demographic’, *feature’ respec-
tively. As per the intuitions considered, type-2 unknown words
i.e. All_Upper, no correction is done for these types of error
words as they are marked as domain words.

In order to correct Single_Upper_in_Middle types of errors
which is type-3, the error word is split at the upper case letter.
After splitting two separate words are obtained which are then
matched if they are standard English word (through matching
with the dictionary). If both are found to be English words
then both the words with a space introduced between them are
output as the correction. For example, ’bothExample’, ’sit-
uationWe’, ’clientsManage’ are corrected as *both Example’,
’situation We’, ’clients Manage’ respectively. Type-4 errors
are not corrected because most of them consist of nouns which
need not be corrected.

The correction scheme of type-5 errors consists of splitting
the error word at all the upper case letters to obtain substrings
and then generating a set of strings as suggestion which con-
sists of the individual substrings, combination of the substrings
in an ordered manner and the error word itself. The error word
itself is included in the suggestion because there may be a case
that the word is correct and although splitting up would cause
different correct dictionary words but that would change the
meaning. For example, the word ’DropBox’ which is non-
dictionary but has a technical meaning (data storage space in
a cloud platform), however, if it is split into "Drop’ and "Box’
where both the words exists in dictionary with different mean-
ings, the entire meaning of the word will be changed and that
would be a wrong suggestion. Other examples to illustrate the
correction scheme include, "PayPal’, "BankOnLine’ for which
suggestions are [Pay, PayPal, Pal], [Bank, BankOn, BankOn-
Line, On, OnLine, Line] respectively. The overall correction
policy is outlined in Algorithm 2 and Table 1 depicts examples
of different types of errors and their correction/suggestions
generated by the framework.

5.2. Evaluation

Experimental data and execution time:
The framework has been implemented in java associating a
standard English dictionary available over Internet. However,
the framework can be used with any other dictionary in the

206

same language. We have run our framework on two data sets
in a machine having configuration as follows. Intel® Core™
17-4600U CPU @ 2.10GHz x 4 with 15.6 GiB memory having
64-bit ubuntu 14.04 LTS operating system. As the correction
policy is rule based and edit distance is not calculated for all
error words for its correction, instead for a particular type of
error (type-1) edit distance is computed, this saves computa-
tional overhead based on the amount of the particular error type
present in the data set. One of the data sets is collected by a
financial institution where the huge amount of text is generated
by its customers and employees. In this data set total 7,72,020
words are analyzed and CPU execution time was measured as
6 minutes and 16 seconds having 40.3% type-1 error of all the
unknown words.

Another data set comprises of the gathered emails gener-
ated within an enterprise. These mails are work related and
generated by the employees to communicate with team mem-
bers within the enterprise. From this data set total 5,782 words
are analyzed and the framework implementation took 13.7 sec-
onds as CPU execution time having 11.74% type-1 error of all
unknown words.

Results: To evaluate the correction policy we used man-
ual intervention. Manually we validated total 2,554 sugges-
tions given by the framework for identifying domain words
and correction(s) suggested for different kinds of erroneous
words. Table 2 shows the evaluation results along with the ac-
curacy. The suggestion consisting of single word is evaluated
positively if the suggested word is actually correct.

As All_Upper types of unknown words are considered as
domain words, 400 such words were evaluated with human
supervision whether the word is actually a domain word or not.
We got 68.25% accuracy in this case i.e 68.25% such words
were actually domain words.

Total 1506 error words of type Single_Upper_in_Middle are
evaluated. The suggestion is evaluated positively when two
words merged (last word of a sentence and first word of next
sentence) and in suggestion those are corrected properly by
splitting those words and adding a space between them. In this
case, 79.61% accuracy has been obtained i.e. 79.61% sugges-
tions were actually correct.

Suggestion for All_Lower type unknown word consist of
single word. During evaluation, it was checked whether the
suggested word was appropriate correction for that unknown
word or not. In this category, 200 unknown words were eval-
uated with 76.5% accuracy achieved i.e. 76.5% suggestions
were actually correct.

As the correction scheme considers words having two or
more versions of spelling as non-erroneous words, in order to
evaluate, we considered 217 words having two or more ver-
sions of spelling. These words are validated whether they are
actually non-dictionary but correct words. In this case, 82.03%
were found actually correct words.

For the case of Multi_Caps type unknown words, frame-
work generated suggestion includes more than one word, so,
we evaluated the suggestion positively if it contains the cor-
rect word. 231 words from this category were evaluated and
90.04% accuracy was obtained i.e. 90.04% suggestions con-
tained the correct word in the list of words suggested for a
Multi_Caps type unknown word.

6. Conclusion

In this paper we have presented a framework which cleans
consumer generated semi-formal text and automatically identi-

Table 2: Accuracy of rule based correction scheme with man-
ual evaluation

Suggestions evaluated

Type (total: 2554) i
All_Upper 400 68.25%
Single_Upper

in Middle 1506 79.61%
All_Lower 200 76.5%
Multiple versions | 217 82.03%
Multi_Caps 231 90.04%

Algorithm 1: FindType(unknownWord)

Input : Letters of unknown word
Output: Returns the type based on different patterns

1 foreach letter € unknownW ord is lower case do

2 | type+ All_Lower;

3 end

4 foreach letter € unknownW ord is upper case do

5 | type+ All.Upper;

6 end

7 if (beginLetter A endLetter) € unknownW ord is lower case then

8 foreach letter € (unknownWord \ {beginLetter, endLetter})
do

9 if letter is upper case then

10 | increment UpperCaseCount;

1 end

12 end

13 if UpperCaseCount = 1 then

14] type < Single.-Upper_in_Middle;

15 else if UpperCaseCount > 1 then

16 | type«+ Multi_Caps;

17 end

18 end

19 else if beginLetter € unknownW ord is upper case then

20 foreach letter € (unknownWord \ beginLetter) do

21 if letter is lower case then

2 | type + Initial Upper;

23 else

4 | type+ Multi_Caps;

25 end

26 end

27 end

28 else

2 | type + Multi_Caps;

30 end

Algorithm 2: RuleBasedCorrection(errorWord)

Input : Letters of unknown word
Output: Returns the rule based correction for different patterns
Notations: FindNearestWord: returns word from dictionary with minimum edit
distance w.r.t errorWord
1 type +FindErrorType(errorW ord);
2 if type is All_Lower then
3 | out <+ FindNearestWord(errorWord, Dictionary);
4 elseif type is (All_.Upper \/ Initial_Upper) then
| No correction;
else if type is Single_Upper_in_Middle then

5

6

7 {stri, stra} < get substrings by splitting errorW ord at upper case;

8 if {stry1, stra} € Dictionary then

9] out +— concatenation of str; followed by space and then stry;

10 else

1 | No correction;

12 end

13 else

14 SubstringList < get substrings by splitting errorW ord at upper
cases; /+ Multi_Caps */

15 foreach str € SubstringList do

16 Nextsy, < nextstring of str € SubstringList;

17 if Neatgy, is All.Upper \ Length of Nexty, is 1 then

18 Appendedgi, + {str, Nextsir};

19 out + out | J{str, Appendedst, };

20 else

21 | out + out \J{str, Nextos, };

22 end

23 end

24 if errorWord ¢ out then

2 | out « outJ{errorWord};

2 end

27 end

fies unknown words for correction along with domain specific
words, where semi-formal environment is the text generated
in the work context within an enterprise/organization. Among
the unknown words, the framework recognizes the set of actual
error words which need to be corrected and the set of domain
specific words which should not be corrected using patterns
and word distributions. A rule based correction policy has been
developed for suggesting correction to the error words. Our
framework has been executed on large data sets collected from
the text generated within enterprise and organization in work
context. We also have manual evaluation of the performance
of the framework which is quite satisfactory. Future work in-
cludes enhancing the correction policy to handle error words in
lower case where multiple dictionary words are merged with-
out space forming a compound word, the dictionary being en-
hanced by the recognized domain specific words. Currently
the compound word correction is done for other types of error
mentioned in the paper.

7. References

Choudhury, Monojit, Rahul Saraf, Vijit Jain, Animesh Mukherjee,
Sudeshna Sarkar, and Anupam Basu, 2007. Investigation and mod-
eling of the structure of texting language. International Journal of
Document Analysis and Recognition (IJDAR), 10(3-4):157-174.

Clark, Alexander, 2003. Pre-processing very noisy text. Proc. of
Workshop on Shallow Processing of Large Corpora:12-22.

Dey, Lipika and SK Mirajul Haque, 2009. Opinion mining from noisy
text data. International Journal on Document Analysis and Recog-
nition (IJDAR), 12(3):205-226.

Elmi, Mohammad Ali and Martha Evens, 1998. Spelling correction
using context. In Proceedings of the 17th international conference
on Computational linguistics-Volume 1. Association for Computa-
tional Linguistics.

Hodge, Victoria J and Jim Austin, 2001. A novel binary spell
checker. In Artificial Neural Networks—ICANN 2001. Springer,
pages 1199-1204.

Kukich, Karen, 1992. Techniques for automatically correcting words
in text. ACM Computing Surveys (CSUR), 24(4):377-439.

Levenshtein, VI, 1966. Binary codes capable of correcting deletions,
insertions and reversals. In Soviet Physics Doklady, volume 10.

Mikheev, Andrei, 2002. Periods, capitalized words, etc. Computa-
tional Linguistics, 28(3):289-318.

Nartker, Thomas A, Kazem Taghva, Ron Young, Julie Borsack, and
Allen Condit, 2003. Ocr correction based on document level
knowledge. In Electronic Imaging 2003. International Society for
Optics and Photonics.

O’Connor, Brendan, Michel Krieger, and David Ahn, 2010. Tweet-
motif: Exploratory search and topic summarization for twitter. In
ICWSM.

Owoputi, Olutobi, Brendan O’Connor, Chris Dyer, Kevin Gimpel,
Nathan Schneider, and Noah A Smith, 2013. Improved part-of-
speech tagging for online conversational text with word clusters.

Owoputi, Olutobi, Brendan O’Connor, Chris Dyer, Kevin Gimpel,
and Nathan Schneider, 2012. Part-of-speech tagging for twitter:
Word clusters and other advances. School of Computer Science,
Carnegie Mellon University, Tech. Rep.

Sarma, Arup and David D Palmer, 2004. Context-based speech
recognition error detection and correction. In Proceedings of HLT-
NAACL 2004: Short Papers. Association for Computational Lin-
guistics.

Wong, Wilson, Wei Liu, and Mohammed Bennamoun, 2006. Inte-
grated scoring for spelling error correction, abbreviation expansion
and case restoration in dirty text. In Proceedings of the fifth Aus-
tralasian conference on Data mining and analystics-Volume 61.
Australian Computer Society, Inc.

207

