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Abstract
This paper addresses the complex problem of speech dereverberation in terms of feature enhancement, employed in automatic speech
recognition system for adverse acoustic conditions. The presented system uses a spherical microphone array to capture the meeting
speech in a medium sized, acoustically not optimized room. The reverberant speech is enhanced in the mel-spectral domain by using a
distribution matching of long time context spectro-temporal supervectors of speech that are decorrelated by principal component analysis.
The enhanced features are further improved by our originally proposed class-dependent two-dimensional linear discriminant analysis. To
minimize the mismatch between the training and testing conditions, we performed multi-condition training with artificially reverberated
data. The proposed system is evaluated on Slovak large vocabulary continuous speech recognition task at different stages. Although the
results show absolute word error rate decrease by 25%, there is still a room for system tuning and improvements in this challenging task.

1.

Reverberation robust automatic speech recognition
(ASR) has been a challenging issue in recent decades for
many researchers and still remains a subject of major in-
terest. It is known that ASR systems are quite sensitive to
reverberant conditions that cause performance degradation
(Wolfel and McDonough, 2009), (Mitra et al., 2015). The
primary reason is the acoustic channel mismatch between
training and testing conditions (Kalinli et al., 2010), (Den-
nis and Dat, 2015). Many methods have been proposed in
the literature to circumvent reverberation effects and im-
prove the robustness of ASR. They can be grouped under
two main categories: feature enhancement algorithms ap-
plied before the recognition of the corrupted speech and
approaches to minimize the acoustic-condition mismatch
(Kalinli et al., 2010), (Yoshioka et al., 2012). They can
also be combined together with more or less advantageous
results (Rajnoha, 2009). A subcategory is represented by
cases when the speech is captured by a microphone array,
where the negative reverberation effects in adverse condi-
tions can initially be suppressed by advanced microphone-
array processing (Brandstein and Ward, 2001).

The mentioned feature enhancement techniques can
operate in the spectrum or in the feature domain directly.
A class of algorithms can use a prior speech model that
assists in the enhancement process (Kalinli et al., 2010).
On the other hand, multi-condition techniques are success-
fully employed to reduce the acoustic-condition mismatch
by interfering the clean training data with room impulse
responses (RIRs) (Mitra et al., 2014), (Ribas et al., 2015).

In this work, we were motivated by the REVERB chal-
lenge that was primarily oriented on the reverberation ro-
bust ASR (Kinoshita et al., 2013). This contribution pro-
poses a system that combines speech dereverberation for
spherical microphone array with the multi-condition train-
ing strategy and aims to reduce the word error rate (WER)
as much as possible. The dereverberation method per-
forms feature enhancement through distribution matching
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of spectro-temporal supervectors that are decorrelated by
principal component analysis (PCA). It was proposed by
(Paloméki and Kallasjoki, 2014) within the REVERB chal-
lenge and slightly adopted by us. The proposed system
is evaluated in Slovak large vocabulary continuous speech
recognition (LVCSR) for meeting speech captured in a
medium sized meeting room. We have built the system
upon our previous works that introduced approaches for
microphone array processing (Hil'ovsky et al., 2016), dis-
criminative feature transformation (Viszlay et al., 2014),
decoding (Stas et al., 2015) and language model adaptation
(Stas et al., 2017). Although the achieved results show ab-
solute WER decrease by 25%, we are aware that there is
still a room for system tuning and improvements.

In Section 2., the microphone array processing is de-
scribed. Section 3. describes the dereverberation method.
Section 4. reviews linear transformations and Section 5.
presents the multi-condition framework. The experimental
setup is given in Section 6. and the evaluation is presented
in Section 7. Finally, the paper is concluded in Section 8.

2. Microphone array signal processing

The presented ASR system uses a 32-channel spherical
microphone array EM32 Eigenmike! with sphere diameter
of 8.4 cm. To control the recorded multichannel signal, we
used our software library MAPL (Microphone Array Pro-
cessing Library) (Hil'ovsky et al., 2016) that implements
algorithms for localization of sources (Nadiri and Rafaely,
2014) and beamforming (Rafaely, 2015).

The localization block is based on time-frequency anal-
ysis and direct path dominance test computed in four
stages: spatial transformation into spherical harmonic do-
main using short-time Fourier transform; spatial correla-
tion; direct path dominance test and the estimation of the
direction of arrival (DOA). The information from the lo-
calization block is used in the beamformer to adapt the di-
rectional characteristics for each sound source.

"https://mhacoustics.com/products



3. Speech dereverberation

The dereverberation method used in this work is an un-
supervised approach that utilizes clean speech prior. The
estimated features of the dereverberated speech are ob-
tained by matching the reverberant speech distribution to
the clean speech distribution. The distribution matching
(DM) aims at recovering the clean spectra x from the re-
verberant spectra y, when the clean prior distribution p(x)
is known a priori and the observed reverberant speech
p(y) can be estimated in the recognition phase (Keronen
et al., 2015). The dereverberation can be considered as a
Bayesian inverse problem, where the posterior distribution
for the dereverberated speech p(x|y) is defined as:

p(xly) o< p(x)p(y|x), (D

where p(y|x) represents the reverberant observation
(Paloméki and Kallasjoki, 2014). The DM is performed
in three steps in two iterations. In the first iteration, the re-
verberated speech x is treated as the observed speech y,
whereas in the second iteration, the dereverberated esti-
mate is used as the observation y = X.

Firstly, the speech signal is parametrized into mel-
spectral feature vectors that are used as the input to the
feature enhancement. In order to counteract the long last-
ing effects of reverberation, the feature vectors are stacked
over N consecutive frames to form /N d-dim. temporal con-
text supervectors y = [y7 ...y7 y_4]%, where N is cho-
sen with respect to the room impulse responses (RIRs) and
d is the number of mel-filters. The speech features y can be
expressed as y ~ Hx, where H is a filter matrix perform-
ing the convolution on x constructed from clean features.

Since the constructed supervectors x and y are highly
correlated along dimensions, PCA is applied to decorrelate
the spectro-temporal supervectors on a log-scale as:

g, = Dlogy ~ Dlog Hx, )

where gy is the observed supervector in the decorrelated
space. The goal of the DM is to develop one-dimensional
element-wise bijective mapping function ES;”) that maps
the elements g; (m) from the reverberant PCA domain to
dereverberated ones g, (m) as:

gy (m) = Fi7 (g, (m)), 3)
where m is the element index. The mappings can be ob-
tained if the distributions are represented by inverse cumu-
lative distribution functions. For simplicity, by dropping
the indices m, the dereverberated log-spectral supervector
x’ can be estimated as:

X = D_leaz (ggl/)v (4)

where D™ is the inverse PCA transformation. Finally, the
supervectors X’ are unstacked back to mel-spectral vectors
x that are post-processed by a Wiener filter and used as
the input for ASR. The dereverberation process based on
the DM method is illustrated In Fig. 1. A detailed mathe-
matical description of the DM method can be found in the
original works (Paloméiki and Kallasjoki, 2014) and (Kero-
nen et al., 2015). The dereverberation toolkit is publicly
available” in form of Matlab functions.

Zhttp://users.spa.aalto.fi/kpalomak/DM.html
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Figure 1: Block diagram of the dereverberation process

4. Extended front-end processing

The discrete cosine transform (DCT) decorrelates the
features in the MFCC (mel-frequency cepstral coefficients)
analysis within the current frame, while the adjacent
frames can be still correlated. We employed PCA (Jolliffe,
1986) to decorrelate all features globally. We computed
the global covariance matrix C' as:

C =

(%)

n

> = R - %),
g=1

where n is the number of training vectors, X; is the current

vector and X = 3" | x; is the global mean. The ob-

tained the PCA matrix was used to transform the enhanced

features instead of the frame-level DCT matrix.

Principal component analysis is a good choice for op-
timal decorrelation of the features but it may not provide
satisfying discriminability of the transformed features be-
cause it does not take into account the class membership of
the feature vectors. Therefore, we applied class-dependent
two-dimensional LDA (CD-2DLDA) to the PCA-based
features. We proposed CD-2DLDA in (Viszlay et al.,
2014) as an extension of the classical 2DLDA (Ye et al.,
2005) on TIMIT (Garofolo et al., 1993) speech recogni-
tion task. In this work, we adopted the method to large
vocabulary task for Slovak language.

CD-2DLDA employs two-pass recognition strategy,
where the first pass generates class labels of test samples
using the baseline system that are used to class-dependent
transformation. In the second pass, recognition of test sam-
ples is performed using CD-2DLDA based acoustic model.
The key idea behind CD-2DLDA is to run the original
2DLDA algorithm for each triphone class 11; separately to
obtain transformation matrices L; and R;. We defined the
class-dependent within-class scatter matrix Sf’i as:

SE = 3 (X — My)RR"(X — M,)"

Xell;

(6)

and the class-dependent within-class scatter matrix S of
class 7 coupled with L as:

Se, = Z (X — M))"LLY(X - M), @)

Xell;

where X is a feature matrix, n; is the number of feature
matrices in class i, M; = ni > xem, X is the class mean
matrix, and & is the number of classes. and n is the to-
tal number of training elements. The between-class scatter
matrices S and S{ stay same, as in 2DLDA. The detailed
description of CD-2DLDA can be found in the original pa-
per (Viszlay et al., 2014).



5. Multi-condition training strategy

Generally, reverberation causes acoustic mismatch be-
tween the training and testing conditions, which usually
degrades the ASR performance. ASR systems trained
purely on clean data usually show dramatic performance
degradation under real conditions (Mitra et al., 2015),
(Harper, 2015). Multi-condition training (MCT) is a well-
established technique to handle reverberant conditions by
augmenting the clean training data with additional de-
graded data (using RIRs) and by training a reverberant-
robust acoustic model that reduces the acoustic-condition
mismatch. Moreover, the combination of MCT with front-
end speech enhancement generally improves the ASR per-
formance even more (Ribas et al., 2015), (Harper, 2015).
Based on the mentioned facts, we have built an ASR sys-
tem that follows the way of multi-conditional framework.
The intention of MCT is to add some reverberation and
noise to make the training data “dirty". In this work, we
created the MCT data in two different datasets: 1) artifi-
cially reverberated dataset and 2) pseudo-clean dataset.

5.1. Artificially reverberated dataset

The first dataset was generated through a convolutive
interference of clean speech signals with a FIR filter repre-
sented by RIRs. For that purpose, we utilized the Gardner’s
reverberation toolkit® that supports corrupting of speech
with a reverberation of small, medium and large room.
Several datasets were generated according to different con-
figurations (RIRs). In order to analyse the influence of the
different reverberation levels to the error rate, the datasets
were explored independently, always joined with the clean
dataset. Based on a comprehensive experimental analy-
sis, we chose the best-matching dataset that provided the
lowest WER. In other words, we minimized the mismatch
between the training and testing conditions.

However, we found that even better channel condition
match can be achieved if the reverberated dataset is sub-
sequently processed by the dereverberation algorithm. It
is an expectable outcome because the test data were pro-
cessed by the same algorithm so the acoustic channel con-
ditions can be perfectly matched.

5.2. Pseudo-clean dataset

The second dataset was generated in similar but much
more simpler way. Based on supplementary experimen-
tal analysis we found that an additional ASR performance
gain can be achieved when also the clean speech dataset
is processed by the dereverberation algorithm and joined
to the multi-conditional dataset. We called that particular
dataset as pseudo-clean one. In that way, the amount and
the level of the MCT training data is increased.

The block diagram of the proposed system is illustrated
in Fig 2. The artificial reverberation, feature enhancement
for training data, PCA, CD-2DLDA and AM training are
performed offline.

3www.cps.unizar.es/ ~fbeltran/matlab_files.html
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Figure 3: Spherical microphone array EM32 Eigenmike (a)
and the recording setup in the meeting room (b)

6. Experimental setup
6.1.

The recording scenario was realized using a spherical
microphone array EM32 Eigenmike (see Fig. 3 (a)) in a
medium sized meeting room with a relatively long room
impulse response. In order to ensure real acoustic envi-
ronment, the room was not acoustically optimized in any
way. The microphone array was set on a fixed stand at
a height of 1.75 meters from the floor and placed in the
middle of the room (see Fig. 3 (b)). Synchronously with
EM32, the speech was recorded also with a close talk mi-
crophone AKG C111 LP that was worn by each speaker.
This signal was considered as an auxiliary clean speech in-
tended for comparison with the reverberated one. During
recording, the speakers sat at the tables around the micro-
phone array and they read the prepared text.

Multichannel recording setup

6.2. Acoustic corpus and speech data

We used a gender-balanced acoustic database that in-
cluded 80 hours of manually annotated speech acquired
from TV shows called as “Court Room™. It covers over-
all 98 different speakers.

The test data were generated from the acoustic mate-
rial recorded by EM32 and processed into single-channel
recordings using MAPL. The resulting test set was repre-
sented by 329 speech segments that corresponded to 21
minutes of speech. The speaker inventory consisted of 3
speakers (2 males, 1 female) that were not included in the
training part. Only one speaker was talking at a time. A se-
lected part of the test set (30 segments) is freely available*
for demonstration purposes.

*http://nlp.web.tuke.sk/pages/reverberant



The single-channel source speech signals were pre-
emphasized and windowed every 10 ms using Hamming
window of length 25 ms. Fast Fourier transform and mel
filter-bank analysis with 26 channels were applied to the
windowed segments. The subsequent processing steps
were performed according to the specific system (FBANK
e.g. log-mel-spectral, MFCC, PCA, CD-2DLDA).

6.3. Acoustic modeling

The presented Slovak LVCSR system makes use of tri-
phone context-dependent acoustic models based on three-
states left-to-right hidden Markov models (HMMs) with 32
Gaussian mixtures per state. The typical tree-based state
tying algorithm for HMMs (Young et al., 2006) has been
replaced by an effective triphone mapping (Darjaa et al.,
2011) that produced 3177 triphone classes used also in the
CD-2DLDA based computing.

6.4. Language modeling

The background language model was created using the
SRILM Toolkit (Stolcke, 2002). It was restricted to the
vocabulary size of about 500 thousand unique words and
smoothed by the Witten-Bell back-off algorithm. The tri-
gram model was trained on the web-based corpus of Slovak
written texts. The corpus size of about 1.89 billion tokens
and 110.75 million sentences was then segmented into 5.93
million paragraphs with approximately 315 words on av-
erage for better representation in the vector space. After
that, semantic indexing and vector space modeling were
implemented to retrieve a subset of text documents from
the background corpus relevant to the topic and speak-
ing style of a speaker. Also, the authors proposed docu-
ment retrieval approach based on using Paragraph Vectors
(Le and Mikolov, 2014) for topic-specific modeling to im-
prove speech recognition accuracy for individual speakers
(Stas et al., 2017). In this approach, they select a subset of
text documents semantically similar to the output hypothe-
ses from recognized speech segments in the first decoding
stage. A small topic-specific LM was then created from
the relevant documents, interpolated with the background
LM, adapted to the current topic and speaking style of a
speaker, and applied during the second decoding stage(s).

6.5. Decoding and evaluation

The speech recognition decoder was based on large vo-
cabulary recognition engine Julius (Lee et al., 2001) that
was modified to support multi-threaded parallel speech
recognition and sharing acoustic and language models
among all instances for memory space saving purposes
(Lojka et al., 2014). The acoustic model training and the
decoding were run in parallel mode on a high-performance
computing cluster IBM Blade System x HS22.

Word error rate (WER) was used to evaluate the perfor-
mance of the LVCSR system. It was computed by compar-
ing reference annotations against the recognized result as
WER = S£2+L % 100 [%], where S refers to the num-
ber of substituted words, D is related to words, which are
missed out, [ indicates the number of words incorrectly
added by the recognizer, and N is the total number of
words in the reference (Young et al., 2006).
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Baseline AM (39-dim.) || Eigenmike | CTM |

MFCC_0_D_A_Z 83.03 26.63
MFCC_D_A Z 85.71 32.83

Table 1: Word error rates (%) of the baseline systems

Speech prior ﬂ #Recordings I Duration | WER (%) |

Court Room #500 1.19h 75.98
Court Room #2000 1.99 h 73.65
Judicial #1713 2.90 h 73.16
CISCO lect. #1728 3.31h 72.50
BN-studio #2115 2.83h 79.02
BN-exterior #2577 2.56 h 76.19

Table 2: Performance of the feature enhancement method

7. Experimental results and evaluation

The experiments were performed on Slovak LVCSR
task for meeting speech. There are overall five evaluation
stages. The results are expressed in terms of WER in %.

7.1.

We present our results for two baseline systems, that
are listed in Tab. 1. Both systems use standard 39-dim.
MECC coeffs. with a subtle difference in features. The
system denoted as MFCC_0_D_A_Z uses 12 cepstral co-
effs., O-th coeff., A and A2 coeffs., whereas the model de-
noted as MFCC_D_A_Z uses 13 cepstral coeffs., A and
AZ? coeffs. and it does not contain the O-th coeff. It was
trained for secondary comparison with the results obtained
from feature enhancement (see Section 7.2.). The WERs
are really high because the LVCSR system trained on clean
data could not recognize the reverberant speech correctly.
The MFCC_0_D_A_Z system is treated as the reference
in the following sections and would be treated as final one
if any improvements were further done. Just for interest,
we also show additional results achieved by recognizing
the same speech session from the close talk microphone
(CTM). It can be clearly seen that the speech almost with-
out reverberation produces significantly lower error rates.

Baseline system

7.2. Feature enhancement

The second stage was the complex evaluation of the
dereverberation algorithm on the test data described in Sec-
tion 6.2. The algorithm generated 26-dim. enhanced fea-
tures in the log-mel-spectral domain that could not be eval-
uated in such form. Therefore, we applied a DCT post-
computing to obtain 39-dim. pseudo MFCC_D_A_Z (the
0-th coeff. could not be computed) features that are reg-
ularly comparable with the baseline reference. The algo-
rithm itself operates with several tunable-free parameters:
1) the length of the stacking window (/V), 2) the number
of retained principal components (M) and 3) the type and
amount of the clean speech prior data. Based on a deep
analysis, we determined that N = 20 and M = 40 is the
optimal configuration for our data. Note that, we chose
d = 26 mel-filters according to the sampling frequency
fs = 16kHz. Initially, we randomly selected 500 record-
ings from the clean training set “Court Room”.



We achieved WER equal to 75.98% with the mentioned
setup. In order to find the best configuration of the algo-
rithm for the following experiments, we explored different
prior speech data with fixed parameters M/ and N. The
obtained results are listed in Tab. 2 with other notable in-
formation. All prior data were acquired from our particular
Slovak corpora from different domains (judicature, CISCO
course, broadcast news (Viszlay et al., 2016)). From the ta-
ble we can observe that the best result was achieved, when
recordings of CISCO lectures were employed as the speech
prior. These data were the cleanest, without any noises
or music in the background. Moreover, we found that the
quality of the prior data in sense of clearness (unlike the
amount) is essential for the successful dereverberation.

7.3. Performance and influence of global PCA

In the next stage, we replaced the DCT by PCA in the
post-computing procedure. The PCA matrix was trained
on the clean training data, as is typical in ASR. The 26-
dim. input features were reduced to 13 and expanded with
A and A? coeffs. It is known that PCA has better decorre-
lation effect that is proven in Tab. 3 (part 1.), where the
dereverberation error rate was reduced to 62.98%. The
global PCA was applied in context-free manner and is in-
dependent from that applied in the dereverberation process.

7.4. Multi-condition training (MCT)

The first phase of MCT is evaluated in Tab. 3 (part
II.). According to the mentioned facts about the MCT
data (see Section 5.), the REV dataset represents the ar-
tificially reverberated training set, the ENH dataset cor-
responds to the enhanced REV dataset and the nota-
tion CLEAN2ENH stands for the pseudo-clean dataset.
From the results we can deduce that the highest multi-
conditionality is ensured, when all three datasets are joined
together (3 x 80 = 240 h) thus the acoustic-condition mis-
match is minimized as much as possible. The WERs are
compared to the previous stage (72.50%), without PCA so
far. Utilizing the MCT strategy, we were able to reduce the
WER by —4.43% compared to feature enhancement.

7.5. System fusion and fine tuning

After proving that PCA brings a significant improve-
ment and that MCT also yields an appreciable improve-
ment, we decided to fuse both systems together. The suc-
cess of the fusion can be seen in Tab. 3 (part III.), where
WER=60.65% was achieved by applying PCA to the MCT
datasets. After optimization, we obtained WER=58.35% at
51 dimensions (17 + A + A?2). To decrease the error even
more, we carried out language model adaptation (LMA) to
the specific topic that resulted in a modest error decrease.

We employed CD-2DLDA in the last evaluation stage
in the hope that the PCA features can be improved
by discriminative transformation. This hypothesis was
proven to be true and its positive effect is demonstrated
in line denoted as CD-2DLDA*, where **° denotes the
’CLEAN+ENH+CLEAN2ENH (51)’ dataset. The CD-
2DLDA transform was set to L = 6, R = 4 thus the output
features had 48-dims. (24 + A). At last, we generated an
adapted LM for the CD-2DLDA system but it did not suc-
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| L Features (39-dim.) || WER (%) |
ENH (FBANK+DCT) 72.50
ENH (FBANK+PCA) 62.98

| . MCT | WER(%) |
CLEAN+REV 69.99
CLEAN+ENH 68.67
CLEAN+REV+ENH 69.33
CLEAN+ENH+CLEAN2ENH 68.07

| I MCT + PCA (+CD-2DLDA) [ WER(%) |
CLEAN+ENH+CLEAN2ENH (39) 60.65
CLEAN+ENH+CLEAN2ENH (51) 58.35
CLEAN+ENH+CLEAN2ENH (S1+LMA || 58.14
CD-2DLDA* (48) 57.79
CD-2DLDA* (48)+LMA 57.79

Table 3: Influence of global PCA (I.), Comparison of
multi-condition datasets (II.) with subsequent PCA and
CD-2DLDA trained multi-conditionally (III.)

0 Baseline MFCC ——

ENH (DCT)
ENH (PCA)

MCT —
MCT+PCA =y
CD-2DLDA ez

WER (%)

Figure 4: Overall comparison of the presented approaches

ceed at all (CD-2DLDA* (48)+LMA). Therefore, we con-
cluded that the WER level was reduced for the presented
system as much as possible.

Finally, we give a summary in Fig. 4 through overall
evaluation and comparison of the presented approaches. It
can be concluded that the reverberation method itself re-
duces the reference level of WER by —10.53%. The global
PCA is shown to be very effective (—9.52%), when it is
applied instead of DCT as the post-computing step. We
prove that the MCT framework fused together with linear
transformations helped to reduce the condition mismatch
considerably, exactly by —14.71%. Ultimately, the total
absolute decrease achieved with respect to the baseline ref-
erence is —24.88%.

8. Conclusions and future intentions

In this paper, we reported an application result of build-
ing a reverberant-robust Slovak LVCSR system that uses
a microphone array to capture speech in a meeting room.
Several methods and techniques are employed to address
the problem of the reverberant speech. We are aware
that the presented system is not currently able to suppress
the great impact of such high-level reverberation but the
achieved absolute decrease of WER is quite interesting.

Our nearest future intentions are focused on replacing
the conventional acoustic modeling and speech recogni-
tion approach by neural network based techniques using
the Kaldi toolkit, definitely.
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