Morphosyntactic disambiguation for Polish
with bi-LSTM neural networks

Katarzyna Krasnowska-Kieras

Institute of Computer Science, Polish Academy of Sciences
Jana Kazimierza 5, 01-248 Warsaw, Poland
kasia.krasnowska@gmail.com

Abstract
The paper presents a system for morphosyntactic disambiguation of Polish texts based on a bi-directional LSTM recurrent neural network.
The system competed in the PolEval 2017 evaluation campaign task 1(A), achieving the top accuracy of 94.6% on the task’s test data.

1. Introduction and related work

Part of speech (POS) tagging is an important task in
NLP, necessary in the initial steps of many text process-
ing pipelines. While POS tagging for English has already
been extensively researched, with the accuracy of state-of-
the-art systems exceeding 97%," the performance of tools
available for Polish still calls for a substantial improvement
(for an overview and discussion of the currently available
and used tagging/disambiguation tools and resources for
Polish, see Kobylifiski and Kieras, 2016).

A main source of difficulty and potential confusion
when Polish POS tagging is concerned arises from the in-
flectional nature of Polish. First, the rich inflectional char-
acteristics of word forms call for an elaborate, positional
tagset (with ca. 4000 distinct tag combinations as com-
pared to, e.g., 37 tags in the WSJ tagset or 85 tags in
the Brown Corpus tagset), making the task more compli-
cated. Second, POS tagging for Polish is typically cou-
pled with morphosyntactic analysis (restricting the sets of
possible tags for each token via dictionary lookup), mak-
ing it less straightforward to define the exact scope of the
tagging problem. The firm distinction between the tasks
of morphosyntactic tagging and morphosyntactic disam-
biguation of inflectional languages and a precise defini-
tion of both tasks was postulated in the evaluation paper
by (Radziszewski and Acedanski, 2012).

The first, now obsolete, taggers for Polish were de-
scribed by (Dgbowski, 2004) and (Piasecki, 2007). The
research in this field was continued with different ap-
proaches, including Brill (Acedarnski, 2010), memory-
based (Radziszewski and Sniatowski, 2011), and CRF
(Waszczuk, 2012; Radziszewski, 2013) taggers.

2. Morphosyntactic disambiguation task

The problem of morphosyntactic disambiguation (MD)
as considered in this paper is formulated as fol-
lows. The input consists of a sequence of sequences
(chunks/sentences/paragraphs) of tokens, each token an-
notated with its morphological analysis (set of its possible
morphosyntactic tags, typically obtained from a dictionary
or a morphosyntactic analyser) or a special symbol ign, de-
noting an unknown word with no information about pos-

"https://aclweb.org/aclwiki/POS_Tagging_
(State_of_the_art)

367

sible morphosyntactic tags available. The task is to output

sequences of correct tags corresponding to the input tokens

in each input chunk and amounts to:

e selecting the appropriate tag from the list for the tokens
for which it is provided,

e generating the appropriate tag for the ign tokens.

Each tag consists of POS followed by values of gram-
matical categories pertaining to this particular POS. As
an illustration and running example, consider the sentence
Mieszka w Kotkowicach. (S)he lives in Kotkowice.” The
possible tags for the 4 tokens constituting this sentence,
as well as the tags correct in this context, are given in Ta-
ble 1. The first token Mieszka is the most ambiguous and
can be interpreted as a form of the verb mieszka¢ “to live’,
the noun mieszek.M3 ‘moneybag’ or the noun Mieszko.M 1
(male name). The second token, w, is unambigous as far
as part of speech is concerned, but can be interpereted as
a preposition requiring either accusative or locative case.
The third token Kotkowicach is a name of a village un-
known to the morphological analyser and it is up to the
disambiguation tool to guess its correct tag. Disambigua-
tion of the last token, punctuation, is trivial as only one
possible tag is proposed.

token possible tags correct tag

Mieszka subst:sg:gen:m3 | fin:sg:ter:imperf
fin:sg:ter:imperf
subst:sg:acc:m1
subst:sg:gen:m1

w prep:acc:nwok prep:loc:nwok
prep:loc:nwok

Kotkowicach | ign subst:pl:loc:n
interp interp

Table 1: An example 4-token sentence with morphological
analysis and gold-standard tags.

The performance of an MD tool is measured in terms
of accuracy, i.e. the percentage of tokens assigned the
same tag as in gold standard data.

3. System description

This section provides details of the proposed MD sys-
tem. 3.1. describes the architecture of a recurrent neural
network at the core of the disambiguator. In 3.2., the format

and information content of input vectors fed to the neural
network are explained. Finally, 3.3. provides details on fi-
nal steps transforming the networks’s output into the tag
sequence returned by the tool.

3.1.

Morphosyntactic disambiguation is performed by a bi-
directional recurrent LSTM (Hochreiter and Schmidhu-
ber, 1997; Gers et al., 1999) neural network. The num-
ber of hidden layers in the network and the size of hid-
den LSTM units is a configurable parameter of the system.
The network is implemented in Python, using the Keras?
library with TensorFlow? backend. The network structure
is schematically shown in Figure 1.

For each text chunk to be morphosyntactically disam-
biguated, its tokens are translated into lists of input vectors,
each vector dedicated to other type of information about
the token. The exact content of the input vector list de-
pends on the feature scheme selected in a particular model
configuration. Possible input vectors are described in 3.2.

For each token, its input vectors are passed to appropri-
ate subnetworks. Most of these subnetworks simply copy
their input to output, but some perform a non-trivial oper-
ation (see, e.g., 3.2.2.). The outputs of the subnetworks are
then concatenated into one vector that is passed to the first
bi-LSTM layer of the network.

The output of the last bi-LSTM layer serves as common
input to a number of dense layers with softmax output ac-
tivation and categorical cross-entropy loss function. Each
dense layer predicts a probability distribution over values
of a particular part of the correct tag: there is one layer ded-
icated to the POS, and one for each morphosyntactic cate-
gory in the tagset. For the morphosyntactic category layers,
apart from values of this category found in the tagset, the
additional *absence’ value is possible to represent the lack
of this particular category in the tag.

Neural network architecture

3.2,

3.2.1. Morphological vector

The morphological information consists of the set of
possible tags for each token. The proposed system treats
the value at each position (corresponding to POS and par-
ticular grammatical categories; tag positions are colon-
separated, as shown in Table 1) of each possible tag as
a separate information unit. The set of possible tags is then
represented as a 0-1 “bag-of-values” (BOV) vector, with
the one bit representing each distinct POS/category value
in the tagset and additional bits for each category repre-
senting its absence.* The presence of given category value
in any of the possible tags is reflected by the corresponding
vector entry being 1. If no possible tag contains given cat-
egory, its ‘absence’ bit is set to 1. The unknown tokens are
assumed to have the POS value of ign and no morphosyn-
tactic categories specified, so that their vectors can follow
the same convention. For example, the morphology vector

Input vectors

2https://keras.io

3www.tensorflow.org

“Sets of possible values of each POS/category are mutually
disjoint.

368

for the token Mieszka in Table 1 would have ones in po-
sitions corresponding to subst, fin, sg, acc, gen, m1, m3,
ter and imperf, ones in positions corresponding to absence
of degree, negation, and other categories non-applicable to
subst or fin POS, and zeroes elsewhere.

Note that this BOV representation is lossy: it ig-
nores interactions between particular values and makes
some possible tags combinations undistinguishable.> On
the other hand, it is compact and allows to represent any
number of possible tags as a fixed-length vector. An inter-
esting alternative to be explored in further work would be
to induce embeddings either for individual tags (and com-
bine them algebraically or via a recurrent subnetwork) or
for whole sets of possible tags (e.g. from a large, morpho-
logically analysed but not disambiguated, corpus).

3.2.2. Word embedding

The first additional vector that can be incorporated into
the network input is an externally trained word embedding
model M.% In the case of tokens for which an embedding
vector is present in M, the procedure is straightforward,
with that same vector being concatenated with the rest of
input. In the case of a token ¢ unknown to M a following
heuristic is employed:
the vocabulary of M is searched for the set Sy of words
sharing the longest possible (non-empty) suffix with ¢,
if S; is not empty, its subset S; of words with the lowest
Levenshtein distance to ¢ is selected and the average of
vectors for words in Sy is considered to be an approxi-
mation of the vector for ¢,
if Sy is empty, a random vector is used.
As an illustration, consider the token Kotkowicach from
our running example. The word embedding models used in
our experiments do not account for this text form, but they
do provide vectors for Motkowicach and Gotkowicach,
which both happen to be locative forms of city/village to-
ponyms. As both those words are at the same Levenshtein
distance from Kotkowicach, their two respective vectors
are averaged to provide an approximate embedding of
Kotkowicach.

token types token occurrences

in model 135918 94.80% | 983006 80.87%

heuristic 7276 5.07% 8511 0.70%
random

— interp 34 0.02% | 223510 18.39%

— other 149 0.10% 486 0.04%

Table 2: Breakdown of the suffix heuristic use.

Table 2 summarises the applicability of the described
heuristic with the 1.2 million token dataset and Word2Vec
models used in the experiments presented in 4. The ta-
ble provides counts of token types and token occurences

E.g., x:y:z,u:v:w and X:v:z,u:y:w receive identical BOV rep-
resentations.

“Embeddings trained jointly with the disambiguation model
are not considered in this work since the currently available anno-
tated training data of 1.2 million tokens is negligibly small when
compared to the amounts of data typically used to obtain word
embedding models.

POS prediction for token ¢

1-st cat. prediction for token ¢

k-th cat. prediction for token ¢

00 .. 00 L X J “ .o 00 L N J “ .. L N J
A A A
dense layer #0 dense layer #1 dense layer #k
™ bi-LSTM layer #n P
--" Y S
- A .-

LSTM layers for token i — 1 P 4

input vector #1 for token ¢

bi-LSTM layer #1

~ -

Vo LSTM layers for token 7 + 1

® 00
input vector #j for token ¢

Figure 1: A schema of the network structure.

split into those for which a vector was readily available in
the model, for which the heuristic was applicable and for
which the fallback to random vector was necessary. Upon
closer examination of the last group, it can be observed
that a vast majority of its tokens are punctuation marks,
trivial to disambiguate with only one possible tag interp. It
can therefore be concluded that the potentially non-trivial
tokens with random vectors constitute only 0.1% of types
and 0.04% of occurrences.

3.2.3. Suffix embedding

As an alternative to embeddings for whole words, we
also explore the idea of training vector representations of
word suffixes of fixed length (suffix length being a config-
urable parameter). While the suffix is less informative than
the whole token form, it might prove to be sufficient for the
purpose of morphosyntactic disambiguation as it roughly
corresponds to the inflectional ending of the word. Reduc-
ing the word to its last few characters significantly reduces
the number of vectors to be learned and increases the num-
ber of occurrences of each ‘word’ in the training corpus.
For example, the training data used in this work (see 4.)
contains 143473 distinct tokens, with an average of 8.47
occurrences per token. When the tokens are trimmed to the
last 4 characters (or the whole token if it has 4 or less char-
acters), those numbers drop to 25931 and 46.87 respec-
tively. Not only are suffix embeddings cheaper to learn in
terms of total size of the resulting vectors, but also can be
expected to need less training data. Therefore, contrarily
to the word embeddings discussed in 3.2.2., the suffix em-
beddings are trained jointly with the disambiguation model
(by an intermediate embedding layer added to the network
if the system configuration includes suffix embedding in-
put), and the corresponding input vector only contains one
value: the index of the token’s suffix on the precomputed
suffix list.

3.3. Output correction

The last performed step is to reconstruct actual tags
from the network’s outputs. Output vectors correspond-
ing to predicted probability distributions over POS and
each grammatical category are examined and the values
assigned the highest probability are collected (the special
‘absence’ values are discarded) and combined into a colon-

369

separated string. At this point, it is not yet correct to refer to
the resulting string as “morphosyntactic tag” since it may
happen to be malformed (inconsistent with the tagset): the
network may have made a mistake by selecting an illegal
set of categories for the POS. Moreover, the string might
be a valid tag, but not one of the possible tags provided for
the token.

Both cases are heuristically solved by comparing the
generated string with the set of ‘candidate’ tags (possible
tags when available, all valid tags in case of ign segments)
and selecting the ‘candidate® tag least divergent from the
considered string. The divergence measure used in this pro-
cedure is Levenshtein distance calculated between encoded
versions of tags. The encoding is intended to make the
textual similarities/dissimilarities between values found in
tags systematic and more meaningful. To this purpose,
each POS/category value is mapped to a 2-character se-
quence, with sequences pertaining to different categories
containing different characters, and sequences pertaining
to the same category sharing only the first character. For
example, nom and acc, both values of case category, might
be mapped to T# and T$, while pos and com, both values
of degree category, mapped to ! c and !v.

4. Experiments and evaluation

For experiments described in this paper, the PolEval
20177 task 1(A) training dataset (=~ 1.2 million segments,
85660 sentences) was used. The dataset consists of seg-
ments annotated with morphosyntactic analysis (i.e. possi-
ble tags or ign for each segment) as well as gold-standard
tags to evaluate against.

Each model was trained for 20 epochs with batches of
2048 sentences (grouped by number of segments).

Table 3 shows the results obtained in 10-fold cross-
validation on the PolEval training dataset. For each tested
model configuration, the size of the hidden LSTM layer
(two layers were used in all experiments) and the feature
scheme is given. Different combinations of following input
vectors were tested:

e MORF: morphological vectors (see 3.2.1.),
e W2V,;: Word2Vec (Mikolov et al., a; Mikolov et al.,
b) word embeddings (see 3.2.2.) with vectors of

"http://poleval.pl

LSTM | feature
. acco accp acce error red. || acCyruin | A
size scheme

| 384 | MORF || 3873% | 89.23% | 91.59% | 0.0% || 9423% [2.6 |
384 MORF+W2V5q 65.65% | 93.04% | 94.78% 38.0% 96.90% | 2.1
384 MORF+W2V oo || 67.41% | 93.37% | 95.03% 41.0% 97.18% | 2.1
384 MORF+W2Vsaqq || 68.53% | 93.62% | 95.22% 43.1% 97.45% | 2.2
512 MORF+W2Vaqo || 68.22% | 93.73% | 95.26% 43.7% 98.14% | 2.9
384 MORF+W2V3q0 || 68.66% | 93.72% | 95.28% 43.8% 97.60% | 2.3
512 MORF+W2V3 || 68.70% | 93.75% | 95.30% 44.1% 98.24% | 2.9
384 MORF+S3 62.84% | 91.06% | 93.59% 23.8% 97.25% | 3.7
384 MORF+S4 62.97% | 91.54% | 93.85% 26.9% 98.12% | 4.3
384 MORF+S5 60.51% | 91.65% | 93.81% 26.5% 98.67% | 4.9

[384 [MORF+Ryoo [52.80% [90.95% [93.11% | 18.1% || 95.89% [2.8 |

Table 3: Results of 10-fold cross-validation on training data. The configuration used in PolEval competition is highlighted.

length ¢, trained on full National Corpus of Polish
(Przepiorkowski et al., 2012) and Wikipedia,®

Ripp: “random” word embeddings of length 100: each
word appearing in the data is assigned a vector of ran-
dom values, drawn uniformly from [—1; 1],

S;: embeddings for suffixes of length ¢, with embedding
vectors of length 64 (see 3.2.3.).

For each configuration, the following measures were
calculated and are presented in Table 3 (weighted average
through folds):

e acc: tag-guessing accuracy, i.e. accuracy calculated
only for ign segments (4.19% of dataset),

accp: actual disambiguation accuracy, i.e. accuracy cal-
culated only for genuinely ambiguous segments (those
with at least 2 possible tags; 54.28% of dataset),

e acc: total accuracy, calculated for all segments,
acCyrqin: total accuracy on the fold’s training data,

e A =accyqin — ace: a measure of overfitting).

The most basic model with single LSTM size of 384,°
operating solely on morphological information, achieves
an overall accuracy of 91.59%, with a very poor guessing
accuracy of 38.73%. Adding the word embedding vectors
to the feature scheme (while keeping the network size un-
changed) brings about a raise in accuracy to 94.78-95.28%
depending on the embedding length, with an error reduc-
tion of 38.0-43.8% wrt. the basic model and a much im-
proved guessing accuracy in the range of 65.65-68.66%.
Moreover, the relative difference between training and test-
ing accuracy A decreases to 2.1-2.3 as compared to 2.6 for
the basic model. For embedding lenghts of 200 and 300,
additional experiments with a larger network (LSTM size
of 512) were performed. The respective increases in testing
accuracy were very slight while both A valued increased to
2.9, which prompts us to favour the less overfitting models.

The improvement seen with suffix embeddings is also
visible, although less pronounced: very similar accura-
cies of 93.50-93.81% and error reduction of 23.8-27.0%.
While using embeddings for different suffix lengths does

8(Wawer, 2015), http://mozart.ipipan.waw.pl/
~axw/models/orth/.

%A bi-LSTM layer consists of two LSTMs for processing the
input left-to-right and right-to-left.

370

not seem to heavily influence the testing accuracy, the
training accuracy raises with suffix length, resulting in
gradually higher values of A, all exceeding the one cal-
culated for the basic model.

In order to gain some more insight into the impact of
word embeddings on MD performance, an experiment with
a random model was performed. The random model as-
signs distinct vectors to distinct words, but does not carry
any more information about word similarities, textual dis-
tribution etc. It is in this respect similar to the “naive” one-
hot representation, but more compact and therefore more
affordable to test. While the random embeddings behave
worse than the trained ones (as expected), it is interesting
to see that they do improve on the basic model, especially
when tag guessing is concerned (with an accuracy increase
from 38.73% to 53.80%).

5. Comparison with other results

Given the specific nature of the PolEval 1(A) task,
it is difficult to find figures in literature that could be
contrasted with our results in a straightforward fashion.
We nevertheless provide some previous results reported in
two overview papers on Polish morphosyntactic tagging:
(Radziszewski and Acedanski, 2012) and (Kobylifiski and
Kiera$, 2016), referred to as EVAL-2012 and EVAL-2016.
In both papers, the same annotaded corpus was used as
that provided as 1(A) PolEval training data, and all ac-
curacy measures were calculated via 10-fold cross valida-
tion. However, the task at hand was different and involved
acomplete process leading from plain text to tagged tokens
(segmentation, morphological analysis and morphosyntac-
tic disambiguation). We cite the following reported mea-
sures:

e acc ;s disambiguation accuracy; very similar to our acc
measure, although the authors are not clear on whether
or how this measure covers guessing performance,
acC,pper: upper bound tagging accuracy; a tagging!”
accuracy measure assuming all segmentation errors'!
made by the tagger to be correctly tagged,

OFrom plain text input.
"Tokens with boundaries inconsistent with gold standard.

. EVAL-2012 EVAL-2016
system/evaluation U U
aCCy;s accupper aACCipwer acclower aACCiower acclower
Pantera (Acedanski, 2010) 92.95% 89.09% 88.79% 14.70% 88.95% 15.19%
WMBT (Radziszewski and Sniatowski, 2011) | 93.00% 87.82% 87.50% 13.57% | 90.33% 60.25%
WCRFT (Radziszewski, 2013) - - - -1 90.76% 53.18%
Concraft (Waszczuk, 2012) - - - — | 91.07% 58.81%

Table 4: Previously reported performance of Polish taggers.

® ace,,e-: lower bound tagging accuracy; the percentage
of tokens that were correctly segmented and tagged;

U . ; 12
® ace;, ... ACCiouer restricted to ign tokens.

The accuracy measures (where provided) given in the
two overview papers are collected in Table 4. All the cited
tools, contrarily to our system, do not employ any addi-
tional data apart from the morphosyntactically annotated
training corpus.

Among works concerning succcessful use of bi-LSTM
(and other) neural networks for tagging, (Plank et al.,
2016) report bi-LSTM taggers trained and tested on Uni-
versal Dependencies data (POS only, 17 tags) for multiple
languages, with an accuracy of 97.63% for Polish.

It is also worthwhile to cite results for Czech, which
is a closely related (both genetically and typologically)
language with a very similar tagset size and two-step ap-
proach to morphosyntactic tagging (morphological dic-
tionary lookup followed by morphosyntactic disambigua-
tion). The Czech state-of-the art status is currently held
by MorphoDiTa (no additional external data, 95.75% ac-
curacy, Strakovd et al., 2014) and Morce (semi-supervised
training, 95.89% accuracy, Spoustova et al., 2009).

6. Portability to other languages

The described system was only tested on Polish, but its
general design allows to easily accommodate it for other
tagsets or languages. It was however not our aim to imple-
ment a universal tool, but rather one suited to the specifics
of MD of Polish, therefore several assumptions were made.
First, the system is designed to operate on large, posi-
tional tagsets typical for inflectional languages. Second,
amorphological analysis step is expected to have been per-
formed earlier in the text processing pipeline. Third, the
possibility of including information such as word embed-
dings or other tool’s prediction in the input vectors depends
of course on the availability of suitable tools and resources.

7. Conclusions

A new method for morphosyntactic disambiguation of
Polish was described in this paper. The proposed system
builds on a bi-LSTM recurrent neural network and out-
performed all the other systems competing in PolEval task
1(A). The design of the presented morphosyntactic disam-
biguator should allow for its use for other inflectional lan-
guages with a processing pipeline similar to the Polish one.

12 A more lenient measure (an analogue of accyper) Would be
more suitable for comparison, but was not provided.

Acknowledgements The presented research was sup-
ported by SONATA 8 grant no 2014/15/D/HS2/03486 from
the National Science Centre Poland. The author would like
to thank Lukasz Debowski (ICS PAS) for sharing his ideas
Jor the network architecture and data representation.

8. References

Acedariski, S., 2010. A morphosyntactic Brill tagger for inflec-
tional languages. In Advances in Natural Language Process-
ing.

Debowski, k.., 2004. Trigram morphosyntactic tagger for Polish.
In Proceedings of the International 1IS: IIPWM ‘04 Confer-
ence. Berlin, Heidelberg: Springer Berlin Heidelberg.

Gers, F. A., J. Schmidhuber, and F. Cummins, 1999. Learning
to forget: Continual prediction with LSTM. Neural Computa-
tion, 12:2451-2471.

Hochreiter, S. and J. Schmidhuber, 1997. Long Short-term Mem-
ory. In Neural computation, volume 9.

Kobylinski, £. and W. Kieras, 2016. Part of speech tagging for
Polish: State of the art and future perspectives. In Proceedings
of CICLing 2016.

Mikolov, T., K. Chen, G. Corrado, and J. Dean, a. Efficient es-
timation of word representations in vector space. In Proceed-
ings of Workshop at ICLR 2013.

Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean,
b. Distributed representations of words and phrases and their
compositionality. In Proceedings of NIPS 2013.

Piasecki, M., 2007. Polish tagger TaKIPI: Rule based construc-
tion and optimisation. Task Quarterly, 11(1-2):151-167.

Plank, B., A. Sggaard, and Y. Goldberg, 2016. Multilingual part-
of-speech tagging with bidirectional Long Short-Term Mem-
ory models and auxiliary loss. In Proceedings of ACL 2016
(Volume 2: Short Papers). Association for Computational Lin-
guistics.

Przepiérkowski, A., M. Banko, R. L. Gorski, and
B. Lewandowska-Tomaszczyk (eds.), 2012. Narodowy
Korpus Jezyka Polskiego. Warsaw: Wydawnictwo Naukowe
PWN.

Radziszewski, A., 2013. A tiered CRF tagger for Polish. In In-
telligent Tools for Building a Scientific Information Platform:
Advanced Architectures and Solutions. Springer Verlag.

Radziszewski, A. and S. Acedariski, 2012. Taggers gonna tag:
an argument against evaluating disambiguation capacities of
morphosyntactic taggers. In Proceedings of TSD 2012, LNCS.
Springer-Verlag.

Radziszewski, A. and T. Sniatowski, 2011. A Memory-Based
Tagger for Polish. In Proceedings of LTC 2011.

Spoustovd, D., J. Haji¢, J. Raab, and M. Spousta, 2009. Semi-
supervised training for the averaged perceptron POS tagger.
In Proceedings of EACL 2009. Athens, Greece: Association
for Computational Linguistics.

Strakovd, J., M. Straka, and J. Haji¢, 2014. Open-Source Tools
for Morphology, Lemmatization, POS Tagging and Named
Entity Recognition. In Proceedings of ACL 2014: System
Demonstrations. Baltimore, Maryland: Association for Com-
putational Linguistics.

Waszczuk, J., 2012. Harnessing the CRF complexity with
domain-specific constraints. The case of morphosyntactic tag-
ging of a highly inflected language. In Proceedings of COL-
ING 2012. Mumbai, India.

Wawer, A., 2015. Sentiment dictionary refinement using word
embeddings. In Proceedings of ISMIS 2015. Cham: Springer
International Publishing.

371

