KRNNT: Polish Recurrent Neural Network Tagger

Krzysztof Wrobel

Jagiellonian University
Krakoéw, Poland
krzysztof @wrobel.pro

Abstract
The article presents a state-of-the-art complete part-of-speech tagger for Polish which uses recurrent neural networks. The networks allow
accessing the full left and right context of a sentence in comparison to a context window. The tagger uses an external morphological
analyzer. In comparison to the best Polish taggers, it does not use word form as a feature for the classifier, there is no separate classifier
for unknown words, and predictions are not limited to tags provided by a morphological analyzer. The accuracy is higher — it achieves
28% error reduction and 7% points higher accuracy for unknown words. The tagger also might work faster than others by utilizing GPU.
The tagger participated in PolEval POS Tagging competition and won task B and task C.

1. Introduction

Part-of-speech taggers assign part-of-speech tags to
each word (token) in a sentence. For inflectional lan-
guages, like Polish or Czech tagger, has to recognize val-
ues of morphological categories such as gender, number,
and case. The categories highly increase the number of
tags up to a thousand.

Recurrent neural networks have not been applied in
natural language processing for Polish yet, despite they are
usually used in state-of-the-art systems for other languages
(Huang et al., 2015a; Wang and Nyberg, 2015; Graves and
Jaitly, 2014; Graves et al., 2013).

Czech is also a Slavic language. The best Czech tag-
gers achieved the accuracy above 95%. Prague Depen-
dency Treebank (PDT) is used as a training and test data.
The main difference between PDT and National Corpus of
Polish (NCP), which is the primary source of tagging data
for Polish, is that PDT is not well-balanced and contains
only articles from newspapers and journals. On the con-
trary, transcriptions of spoken conversations and user gen-
erated content from web forums are included in NCP. Both
corpora were manually annotated by 2 annotators and 1
person who was resolving disagreements. (Kobylifiski and
Kiera$, 2016) obtained scores higher by 0.75 percentage
point by training and testing only on newspaper subcorpus.

This work presents part-of-speech tagger for Polish
using bidirectional recurrent networks (named KRNNT).
Source code and trained models are available at:
https://github.com/kwrobel-nlp/krnnt.

In the next section training dataset and tagset are de-
scribed. Also, it summarizes the best publicly available
Polish taggers. Section 3. formulates recurrent neural net-
works and its bidirectional extension. Main section 4. de-
scribes all modules of the tagger and the training param-
eters. Evaluation is described in section 5.. Section 6.
presents results of PolEval contest. Last section 7. presents
conclusions and future works.

OThis research was supported in part by PLGrid Infrastruc-
ture.

386

Table 1: National Corpus of Polish statistics.

Paragraphs 18484
Sentences 85663
Tokens 1215513
Unique tokens 143478
Average number of tokens in a sentence 14.19
Unique tags 926
Number of tokens with the same tag

Average 1312.65
Standard deviation 8389.12
Minimal number 1
Maximal number 223499

2. Polish Tagging
2.1.

The largest publicly available dataset for Polish is a
manually annotated subcorpus of the National Corpus of
Polish (NCP) containing above 1 million tokens. The cor-
pus is balanced with respect to genres and subjects — it
includes newspaper articles, books, transcriptions of spo-
ken conversations, and user generated content from web
forums.

Table 1 presents statistics of NCP. Assuming full tags
as labels in a multi-class classification problem, they are
very unbalanced.

The NCP tagset consists of 35 grammatical classes,
each having a set of grammatical categories. The num-
ber of all possible tags (grammatical classes with unique
values of grammatical categories) is about 4000, but texts
in NCP represent 926 tag variants.

E.g. Polish adjectives have 2 numbers (singular, plu-
ral), 7 cases (nominative, genitive, dative, accusative, in-
strumental, locative, vocative), 5 genders (human mascu-
line, animate masculine, inanimate masculine, feminine,
neuter), and 3 degrees (positive, comparative, superlative)
— 210 variants in total.

Morphosyntactic tags are represented as a sequence of
grammatical class and values of grammatical categories,

Dataset



e.g. adj:sg:nom:ml:pos, where adj is adjective, sg
is singular number, nom is nominative case, m1 is mascu-
line gender and pos is positive degree.

2.2. Polish Taggers

The best Polish POS taggers that are publicly avail-
able include: Concraft (Waszczuk, 2012), WCRFT
(Radziszewski, 2013), OpenNLP (Kobylifiski and Kieras,
2016), WMBT (Radziszewski and Sniatowski, 2011;
Radziszewski and Acedanski, 2012), Pantera (Acedanski,
2010), TaKIPT (Piasecki, 2007). Comparisons of Polish
taggers were presented in (Kuta et al., 2012; Pohl and
Ziotko, 2013; Kobylifiski and Kieras, 2016)

So far Concraft has been the best Polilsh tagger. It
uses an extended version of CRF algorithm (Lafferty et al.,
2001) to tackle a high number of labels in an efficient way
by restricting space of solutions to the set of tags defined
in a morphosyntactic dictionary. For unknown words, mor-
phosyntactic guessing is employed as a separate classifier.

WMBT is a tiered memory-based tagger. Each tier is
assigned to a grammatical class or a category. A separate
classifier is trained for known and unknown tokens. An
algorithm used for each tier is KNN.

WCREFT is similar to WMBT, but kNN algorithm is
replaced with CRF. Unknown words are pre-processed by
appending potential tags based on analysis of a training
data. Therefore, only one classifier is used while tagging.

Pantera uses rule induction algorithm driven by a mod-
ified version of Brill’s transformation-based learning algo-
rithm (Brill, 1992). It uses two tiers in the process of tag-
ging and operates on parts of labels, i.e. grammatical class
and categories.

TaKIPI employs C4.5 decision tree algorithm. About
200 classes of ambiguity were defined and for each one
the classifier was trained. The tagger uses also handwritten
rules.

Apache OpenNLP library is a free implementation of
NLP algorithms. Algorithm for POS tagging employs per-
ceptron. No tiers were used and all tags are on the output
of the neural network. The main difference to earlier men-
tioned taggers is that OpenNLP tagger does not use mor-
phological analyzer having a token as the only input.

3. Recurrent Neural Network

A recurrent neural network is an extension to feedfor-
ward neural network, which is able to handle a variable-
length sequence inputs. The RNN has a hidden state that
is updated at each time step, therefore it has information
about the left context of a sequence. The RNN shares pa-
rameters across all steps. The default behavior of RNN is
to provide output for each step. However, RNNs are dif-
ficult to train to capture long-term dependencies, because
the gradients tend to vanish or explode.

Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) was developed to alleviate problems
of raw RNNs. The LSTM introduces an additional mem-
ory cell and gates. Output, forget and input gates are re-
sponsible for modulating the amount of memory cell used
to calculate the output of the LSTM and a new value of
memory cell.

387

The output of the LSTM h; at time ¢ is:
ht = o¢ tanh(c;),
where oy is output gate and ¢; is the memory cell:
ot = o (Woxt + Ushi—1 + Vocr—1),

¢t = frer—1 + i tanh(Weay + Uchy—1).

o is the logistic sigmoid function. Forget and input gates
are computed as follows:

Jit=0Wpxi + Uphi_1 4+ Vici_1),

iy = o(Wizy + Uphy—1 + Vici_1).

Gated Recurrent Unit (GRU) is similar to LSTM. It
does not have the memory cell, but utilizes update and re-
set gates. It has fewer parameters than LSTM and therefore
it’s training is faster.

The output of the GRU is:

hi = (1 — z)he—1 + 2z tanh(Way + U (rihe—1)),
where z; is update gate and r; is reset gate.
2z =0(Woae +Ushy—q)

Ty = U(Wr.rt =+ UTht-—l)

A simple extension to the RNN is a bidirectional recur-
rent neural network (BDRNN). It contains two RNNs, the
first working forward, the second working backward. Out-
puts at each step are merged (i.e. concatenated). Forward
RNN remembers the left context and backward RNN re-
members the right context. This feature solves a problem
of providing full context to a token in POS tagging. Many
taggers are using context window to incorporate nearest
neighbors of a token, but it is usually of limited size.

4. Polish RNN tagger

4.1. Tokenization and Morphological Analysis

Text preprocessing is performed by external tools.
Firstly, a text is segmented into sentences and into tokens
using Toki (Radziszewski and Sniatowski, 2011). Sec-
ondly, each token in a sentence is analyzed by morpholog-
ical analyzer SGJP. Maca (Radziszewski and Sniatowski,
2011) integrates both tools and is used in this tagger (Con-
craft also uses Maca).

4.2. Morphological Guesser

A morphological guesser is a system that predicts po-
tential tags for a word form. In practice, it is applied only
for unknown words which are not present in the dictionary.
In this work, a morphological guesser as a separate step
is omitted — unknown words have no features associated
with potential tags. To address this issue, features, based
on the word form were added: first and last three letters of a
word form. WCRFT and Concraft use a separate classifier
that replaces morphological analysis for unknown words.



Figure 1: A neural network used in this work. It allows
variable-length sequences on input, but the figure shows
the network for a sequence of length 3 {z¢,z1,20}. Ar-
rows represent directions of computation. A bidirectional
GRU layer is presented on the left. Operation Concat con-
catenates outputs from two GRU layers into one matrix.
Right diagram shows the full network with two bidirec-
tional layers and a dense layer with shared weights on the
output.

4.3. Morphological Disambiguator

Morphological disambiguator assigns one tag for each
token. The decision is based on features (observations) of
tokens. In this work, classification is performed by a recur-
rent neural network, so there is no need for creating context
window which limits the length of a potential dependency.
By using a bidirectional recurrent neural network, for each
token, a classifier has information about full left and full
right context. It creates an advantage in comparison to a
window approach used in CRF. Both WCRFT and Con-
craft use the context of length 2.

4.4. Lemmatization

Lemmatization is a task closely related to morpholog-
ical disambiguation. Concraft and WCRFT do not tackle
this problem. From a dictionary, they choose all lemmas
associated with the disambiguated tag. Unknown words
are not lemmatized — for the higher scores, token form is
set as the lemma.

In this work, a simple extension is provided. Training
data is analyzed by counting lemmas for each pair of a
token and disambiguated tag. During tagging, the tagger
starts with prediction of a tag and then chooses the most
frequent lemma for the pair: token and disambiguated tag.

4.5. Network Architecture

The network has two bidirectional GRUs. Dropout
(fraction of units to drop during training) is applied to the
linear transformation of the recurrent state. Dropout is also
applied to the results from the second bidirectional GRU
and processed by dense layer with the same shared weights
for each step. The network is presented in Fig. 1. All fea-
tures of words are encoded as one-hot vectors.

4.6. Features

The best Polish taggers use word form as a feature. In
Polish, there are more than 3.8 million unique word forms.
Treating them as one-hot vector would create too many in-
puts for a neural network. Generally, this problem of di-

388

Table 2: Example of features generation for the word
obrazki (images).

token obrazki

tags4 Isubst:nom, 2subst:pl:m3, 1subst:acc, Isubst:voc
tagss pl:nom:m3, nom, pl:acc:m3, acc, pl:voc:m3, voc
shape 1

cases islower

interps

qubs

3letters POo, P1b, P2r, S1i, S2k, S3z

mensionality reduction is being solved by using word em-
beddings. However, in this work word embeddings are not
used — initial attempts have given worse results. Addition
of word embeddings as an additional input to the model
prevented learning from gaining above 90% of accuracy.

Eight sets of features were tested (the number of unique
features is given in parentheses):

o tags4 (388) — each tag is divided into two parts:
grammatical class + case or person, and grammati-
cal class + rest of grammatical categories (Acedanski,
2010),

tags5 (90) — case, and concatenation of number, case
and gerund,

shape (76) — collapsed shape of token - upper case
letters are represented as u, lower case letters as /, dig-
its as d, other characters as x (e.g. Wrobel2017 gives
ullllldddd and after collapsing uld),

cases (5) — information whether word form is all
lower cased, upper cased, capitalized, or a number,

e interps (55) — individual punctuation marks,

qubs (226) — set of all particle adverbs,

e 3letters (276) — first and last three letters of word
form; this feature have source from morphological
guesser in Concraft, in which prefixes and suffixes are
generated,

separator (2) — information about space before to-
ken.

Table 2 presents features generated for the word
obrazki.

4.7. Output Classes

To reduce the number of outputs WCRFT classifies
each grammatical class and category separately while Con-
craft divides tags into two sets (the same as the feature
tagsd).

In comparison to other Polish taggers, KRNNT has un-
divided tags on output. A drawback of this approach is
that tags not occurring in training data can not be predicted
even if the morphological analyzer has information about
possible correct tags.

4.8. Training

10% of training data is used as a validation set for early
stopping. Early stopping criterion is checked after process-



Table 3: Results of taggers in 10-fold cross-validation
scheme using NCP.

Tagger AcClower  AcCupper  AccK,.. —Accl
OpenNLP  87.24% 88.02% 62.05%
Pantera 88.95% 91.22% 15.19%
WMBT 90.33% 91.26% 60.25%
WCRFT 90.76% 91.92% 53.18%
Concraft  91.19% 91.53% 92.07% 60.64%
KRNNT 93.72%  94.05% 94.43%  69.03%

ing every 10,000 sentences with patience 10. The maximal
number of epochs is 150. A loss (objective) function is cat-
egorical loss entropy. The last layer has softmax activation
function.

Training is performed using Nadam optimizer, because
it was proven to be effective for recurrent neural networks
(Dozat, 2016; Sutskever et al., 2013). It is a combination
of two algorithms: RMSProp and Nesterov momentum.

Training was performed on GPU NVIDIA Tesla K40
XL and took about 3 hours (on NCP).

5. Evaluation

Many experiments testing different sets of features and
neural network architectures were conducted (over 40,000
hours on GPU). Taggers were assessed in terms of accu-
racy and speed of tagging. National Corpus of Polish with
10-fold cross-validation was chosen as a training corpus.
Sentences from one paragraph are always in the same fold.
Sentences incorrectly segmented by Maca (3.41% of NCP)
are skipped during training (for simplicity).

Evaluation is performed with the whole pipeline in-
cluding segmentation, morphological analysis and mor-
phological disambiguation as proposed in (Radziszewski
and Acedanski, 2012).

The main metric is accuracy lower bound (Acciower).
It penalizes all segmentation errors and is calculated as a
percentage of all tokens that match tagger segmentation
with correct tag. Additional metric accuracy upper bound
(Accupper) treats segmentation errors as correctly tagged.
It shows potential accuracy for a perfect tokenizer.

Two additional metrics are also provided: accuracy
lower bound for known (Accf, ) and unknown words
(Accl({)wer) .

Comparison of results for each tagger is presented in ta-
ble 3. Scores for OpenNLP, Pantera, WMBT, and WCRFT
originate from (Kobylifiski and Kieras, 2016). Evaluations
for all taggers were performed on NCP and with 10-fold
cross-validation scheme.

KRNNT significantly surpasses scores of other taggers,
the error is reduced by 28% in comparison to Concraft.
The accuracy of tagging unknown words is 7 percentage
points higher than in OpenNLP. Simple voting strategy
over 10 models trained on the same data, but with different
random initialization, increase accuracy lower bound up to
94.30% (tested without cross-validation).

389

0.94

0.92

0.9

0.88

0.86

0.84

Accuracy lower bound

0.82

1000

4000

1 L

7000 10000
Number of paragraphs

13000

16000

0.8

Figure 2: Accuracy lower bound in function of a number
of training paragraphs.

Table 4: Time of tagging NCP measured in seconds. In the
case of KRNNT, a percentage of tagging time when GPU
is waiting for data is given in parentheses. KRNNT is also
tested for corpus sorted by sentence (SS) length.

Tagger 1 core 2 cores 4 cores
Concraft 376 199 140
KRNNT 556 (60%) 297 (50%) 223 (40%)
GPU

KRNNT 423 (74%) 231 (64%) 141 (44%)
GPU SS

For 0.55% tokens, the predicted tag was not in the
set returned by the morphological analyzer. Despite that,
KRNNT correctly assigns tags in 78.89%.

NCP has 2.81% unknown words according to Maca.

(Kobyliniski and Kieras$, 2016) developed ensemble of
the first 5 taggers from table 3. The best voting scheme
achieves the accuracy lower bound slightly above 92%.

Figure 2 shows accuracy lower bound related to a num-
ber of paragraphs, that were used to train the tagger. More
training data is needed to determine whether the classifier
is saturated.

Table 4 shows tagging time in seconds of whole NCP
including the start of a tagger. NCP was manually dis-
tributed for separate processes of Concraft because Con-
craft does not utilize more cores. KRNNT executes longer
than Concraft. The analysis showed that the most time-
consuming is to generate the features, execute Maca and
parse its output. Distribution of these tasks to other cores
decreases tagging time. Values in parentheses give the per-
centage of total time spent by GPU waiting for data. Im-
plementation of the tagger in a statically typed language
should improve performance.

Processing sentences sorted by a number of words im-
proves tagging time by 22%-37% because computations
on GPU are performed in batches and all sentences need to
be padded to the longest sentence in the batch. For sorted
sentences, padding is minimal.



0.9 - =
°
5 o8l _
= ;
o)
] ]
2
il
> =
(&)
o
3>
0.5 = =1
§ Train
Test
0.4 Train unknown tokens T
Test unknown tokens
03 | 1 1 1
0 50 100 150 200 250 300
Epochs

Figure 3: Accuracy lower bound in function of a number
of epochs.

Figure 3 shows accuracy lower bound for training and
test data related to a number of epochs. The neural network
can not memorize the training data (98.3%). Most likely
this is caused by an insufficient representation of the input
(word form is not a feature). The accuracy for test data
is not raising after about 100 epochs and the model is not
overfitting.

Manual analysis of 100 errors of the tagger showed that
6% relate to errors in manual annotation of NCP, e.g. 1o
byty ostatnie stowa, jakie wypowiedziat (these were the last
words that he had spoken) - the word jakie (that) is manu-
ally annotated as nominative, KRNNT tags it as accusative,
which is correct. 9% of errors could only be avoided with
the analysis of the whole paragraph, e.g. Na baliku |[...]
bawito si¢ okoto 100 dzieci. ZnaleZli si¢ wsrod nich (About
100 children played at the ball. There were also among
them) - the gender of word nich (them) is dependent on
reference to dzieci (children). Dependencies longer than 5
words occur in 11% of errors. Including semantics and va-
lency information could potentially reduce errors by 15%,
e.g. Wtadze miasta [...] szukajq inwestora (City authori-
ties are looking for an investor) - the verb szuka¢ (look for)
takes objects with genitive case in this context (KRNNT
assigns accusative case).

6. PolEval: POS Tagging

PolEval is a Polish version of SemEval — a contest for
natural language processing tools. KRNNT participated in
a task of morphosyntactic tagging (Kobylinski and Ogrod-
niczuk, 2017). It involves 3 subtasks: morphosyntactic
disambiguation and guessing (subtask A), lemmatization
(subtask B), and POS tagging (subtask C). Subtasks A and
B are tested on gold segmented data, therefore systems do
not need to perform tokenization and morphological anal-
ysis. Subtask C is tested on raw text and requires whole
text processing pipeline. The training data is NCP. For
subtasks A and B, the model was trained without morpho-
logical reanalysis. Therefore segmentation errors do not
occur. Organizers prepared different testing corpus, they
annotated over 1626 sentences for subtasks A and B and
1675 sentences for subtask C. Average number of tokens
in sentences is around 16.5 — more than in NCP.

390

Table 5: Results of best performing systems of PolEval
subtask A. Accuracy is calculated separately and jointly
for known and unknown words.

Tagger AccK AccV Ace

Toygger 9524% 65.47% 94.63%
KRNNT 94.49%  61.18%  93.80%
NeuroParser 94.21% 64.94%  93.61%

Table 6: Results of PolEval subtask B. Accuracy of lemma-
tization is calculated separately and jointly for known and
unknown words.

Tagger AccK Acc Ace
KRNNT 98.19% 80.86% 97.84%
NeuroParser 97.37% 84.62% 97.11%

The best submission for task A (table 5) was also pre-
pared using bidirectional neural network. The main differ-
ence to KRNNT is a utilization of word embeddings and
reduced output to separate grammatical classes and cate-
gories. KRNNT was placed second in the ranking.

Despite simple lemmatization module in KRNNT, it
won subtask B (table 6). NeuroParser has better accu-
racy in lemmatization of unknown words by 4 percentage
points, so there is a room for improvement.

Subtask C was also won by KRNNT (table 7). How-
ever, lemmatization performed by NeuroParser was also
better. Third place is taken by MorphoDiTaPL (Walen-
tynowicz, 2017) — the framework achieving state-of-the-
art results in Czech.

7. Conclusion

This work presented Polish morphosyntactic tagger
KRNNT. It achieves better accuracy than other publicly
available taggers.

PolEval showed that better results could be achieved
using bidirectional neural networks.

Lemmatization for unknown words may be improved
by a separate neural network using a sequence to sequence
architecture (Cho et al., 2014). Bigger dictionary of named
entities should boost the results.

Despite that tags have some structure, in this work they
are treated separately. Therefore the system can not gen-

Table 7: Results of PolEval subtask C. POS Acc is accu-
racy lower bound for morphosyntactic tagging, LemAcc
is the accuracy of lemmatization and Overall Acc is the
average of POS Acc and Lem Acc.

Tagging
Tagger POSAce LemAcc QOwverall Ace
KRNNT 92.98 96.91 94.95
NeuroParser 91.59 97.00 94.29
MorphoDiTaPL  89.67 95.78 92.73




eralize well, e.g. “verb must be in every sentence” instead
of “one of X tags describing verb must be in sentence”.
Tags should be partitioned on output, or more fine-grained
outputs should be added.

Researchers should also focus on word embeddings for
morphologically rich languages. Including them in a tag-
ger should improve accuracy. What is more, representing
tags as word embeddings might be beneficial because they
can represent dependencies among them (Goldberg, 2016).

RNNs make local decisions for each token, incorporat-
ing CRF or hidden Markov models as the last layer will
assign labels after seeing the word sequence (Huang et al.,
2015b).

Including information from the whole paragraph is es-
sential for some ambiguities in tagging.

8. References

Acedanski, Szymon, 2010. A morphosyntactic brill tagger
for inflectional languages. In International Conference
on Natural Language Processing. Springer.

Brill, Eric, 1992. A simple rule-based part of speech tag-
ger. In Proceedings of the workshop on Speech and Nat-
ural Language. Association for Computational Linguis-
tics.

Cho, Kyunghyun, Bart van Merrienboer, Caglar Giilcehre,
Fethi Bougares, Holger Schwenk, and Yoshua Ben-
gio, 2014. Learning phrase representations using
RNN encoder-decoder for statistical machine transla-
tion. CoRR, abs/1406.1078.

Dozat, Timothy, 2016. Incorporating nesterov momentum
into adam.

Goldberg, Yoav, 2016. A primer on neural network mod-
els for natural language processing. J. Artif. Intell.
Res.(JAIR), 57:345-420.

Graves, Alex and Navdeep Jaitly, 2014. Towards end-to-
end speech recognition with recurrent neural networks.
In Proceedings of the 31st International Conference on
Machine Learning (ICML-14).

Graves, Alex, Abdel-rahman Mohamed, and Geoffrey Hin-
ton, 2013. Speech recognition with deep recurrent neu-
ral networks. In Acoustics, speech and signal process-
ing (icassp), 2013 ieee international conference on.
IEEE.

Hochreiter, Sepp and Jiirgen Schmidhuber, 1997. Long
short-term memory. Neural computation, 9(8):1735—
1780.

Huang, Zhiheng, Wei Xu, and Kai Yu, 2015a. Bidirec-
tional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991.

Huang, Zhiheng, Wei Xu, and Kai Yu, 2015b. Bidi-
rectional Istm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Kobylinski, Fukasz and Witold Kiera$, 2016. Part of
speech tagging for Polish: State of the art and future
perspectives. In Proceedings of the 17th International
Conference on Intelligent Text Processing and Compu-
tational Linguistics (CICLing 2016). Konya, Turkey.

Kobyliriski, Lukasz and Maciej Ogrodniczuk, 2017. Re-
sults of the PolEval 2017 Competition: Part-of-Speech

391

Tagging Shared Task. In Proceedings of 8th Language
& Technology Conference: Human Language Technolo-
gies as a Challenge for Computer Science and Linguis-
tics. Poznan, Poland: Wydawnictwo Poznanskie i Fun-
dacja Uniwersytetu im. A. Mickiewicza.

Kuta, Marcin, Pawet Chrzaszcz, and Jacek Kitowski, 2012.
A case study of algorithms for morphosyntactic tag-
ging of polish language. Computing and Informatics,
26(6):627-6417.

Lafferty, John, Andrew McCallum, and Fernando CN
Pereira, 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data.

Piasecki, Maciej, 2007. Polish tagger takipi: Rule based
construction and optimisation. Task Quarterly, 11(1-
2):151-167.

Pohl, Aleksander and Bartosz Zi6tko, 2013. Using part of
speech n-grams for improving automatic speech recog-
nition of polish. In Machine Learning and Data Min-
ing in Pattern Recognition. Springer Berlin Heidelberg,
pages 492-504.

Radziszewski, Adam, 2013. A tiered crf tagger for polish.
In Intelligent tools for building a scientific information
platform. Springer, pages 215-230.

Radziszewski, Adam and Szymon Acedarski, 2012. Tag-
gers gonna tag: an argument against evaluating disam-
biguation capacities of morphosyntactic taggers. In In-
ternational Conference on Text, Speech and Dialogue.
Springer.

Radziszewski, Adam and Tomasz Sniatowski, 2011. Maca
— a configurable tool to integrate Polish morphological
data. In Proceedings of the Second International Work-
shop on Free/Open-Source Rule-Based Machine Trans-
lation.

Radziszewski, Adam and Tomasz Sniatowski, 2011. A
memory-based tagger for polish. In Proceedings of the
Sth Language & Technology Conference, Poznari.

Sutskever, Ilya, James Martens, George Dahl, and Geof-
frey Hinton, 2013. On the importance of initialization
and momentum in deep learning. In International con-
ference on machine learning.

Walentynowicz, Wiktor, 2017. MorphoDiTa-based tagger
for polish language. CLARIN-PL digital repository.

Wang, Di and Eric Nyberg, 2015. A long short-term mem-
ory model for answer sentence selection in question an-
swering. In ACL (2).

Waszczuk, Jakub, 2012. Harnessing the crf complex-
ity with domain-specific constraints. the case of mor-
phosyntactic tagging of a highly inflected language. In
COLING.



