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Abstract
This paper describes a sentiment analysis system based on tree-structured long short-term memory (LSTM) neural net-
works. As a potential improvement over currently used approaches, we propose a sequential mechanism of combining
network units representing syntactic phrases, which provides an alternative way of preserving the compositionality of
syntactic parents as combinations of their dependents. We train and evaluate our system on a dataset provided in the Pol-
Eval 2017 competition. Our best result obtained with the proposed approach outperforms both basic, linearly combined
LSTMs and as well as a related tree-structured variant of such networks.

1. Introduction 2. PolEval 2017

The dataset released in the PolEval competition

Sentiment Analysis (SA) is an active area of natu- for the task described in this paper can be described
ral language processing research with applications in as a sentiment dependency treebank. In general, senti-
product and political marketing, customer relations ment treebanks are collections of syntactically parsed
management systems and social media communication sentences which have sentiment annotations assigned
studies to mention just a few examples. A common ob- to their constituent words or phrases. The type of
Jective of SA is to automatically detect the attitudinal sub-sentential word combinations which are annotated

value of an utterance or otherwise coherent stretch of

with sentiment labels may depend on the exact syn-
text which can be attributed to a particular author.

tactic formalism used in a given treebank. For exam-

The distribution of such attitudinal values in an ut- ple, the Stanford Sentiment Treebank (Socher et al.,
terance is usually known as its polarity and it usually 2013) contains full constituency parse trees compris-
ranges from positive to neutral and negative (Cambria ing phrases associated with five sentiment classes. On
et al., 2013), possibly with finer-grained distinctions the other hand, the sentences provided in the PolEval
between these main categories, such as somewhat posi- dataset, are dependency-parsed. As we explain below
tive or very negative (Socher et al., 2013). Mor.e recent this distinction has some implications for modeling an
approaches to SA focus on phrase-level polarity clas- SA system which makes use of syntactic annotations.
sification, whereby attitudinal or emotional values are For example, unlike the above-mentioned constituency
detectet?i ‘flt the level of. syntactic phrases and only. then representations, most sentence dependency graphs are
compositionally combined to compute the polarity of N-ary trees of arbitrary length in that a word node
an entire utterance. Such approaches are particularly may directly govern only one or more than two other
lmpor ‘Eant n -aspect—based SA, where dl-ﬁ’erent aspects word vertices as in the sentence shown in Fig. 1, where
of one’s opinion abqut 8 Pr(?dUCtv movie, Person, efe. the verb drazni has four direct dependents (if we count
have to be detected in addition to classifying the over- the punctuation mark as a dependent of the sentence
all sentiment of a text unit. Also, phrase-level models root), and the noun dniu has only one dependent ad-

of SA are better suited to deal with basic syntactic
phenomena such as negation or modality, which may
cause a significant shift in the predominant sentiment
of an utterance (Wilson et al., 2009).

jective calym.

This example sentence! also illustrates the point
of using syntactic annotation in sentiment analysis. It
is quite evident that it expresses a customer’s over-

The present paper evaluates a deep-learning based all satisfaction with a particular brand of perfume,
system for syntax-driven SA, which was submitted to even though its (directly negated) main verb draznié
the PolEval 2017 competition. We first briefly de- (irritate) could be found in a list of keywords which
scribe the PolEval sentiment treebank (a syntactically generally denote a negative sentiment. On a more
annotated sentiment dataset) and the nature of the subtle level, the positive attitude of this utterance to-
classification task. Next, we present the Sequential wards this particular product is further reinforced by
Child-Combination Tree-LSTM Network model of the
proposed system and evaluate its performance on the Tts word-for-word into English could be (It) doesn’t
PolEval test set. irritate even after a whole day.
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Figure 1: A dependency representation of the example
sentence shown in Table 1.

the indirectly negated adverbial clause (i.e. even af-
ter a whole day), which denotes a typical condition in
which other fragrances might become irritating.

Table 1 illustrates the type of annotations made
available in the PolEval 2017 sentiment analysis
datasets. For each word in a sentence (listed in row
W) its parent word node was indicated (see row P) to-
gether with its sentiment label (as in row S). The par-
ent labels could be used to reconstruct the syntactic
dependency tree of this sentence as shown in Fig. 1.
The goal of the PoleVal SA subtask was to a) correctly
identify sentiment labels of each leaf word node and
b) to correctly predict the sentiment label of every
complete subtree starting in every non-terminal node
of the sentence tree. The list of such leaf nodes and
subtrees for which sentiment labels would have to be
detected if the example sentence was found in the test
set is shown in Table 2. The overall sentiment of an
utterance is thus predicted from the sentiment value
of its root node, which is usually the main verb of
a sentence and the subtrees of the dependency trees
considered in this task (other than the terminal word
nodes) are self-contained phrases.

W | Nie drazni nawet po calym dniu
P |2 0 2 2 6 4 2
S |0 1 0 0 0 0 0

Table 1: An example PolEval dataset sentence with
phrase-level sentiment annotation (W — word nodes,
P — syntactic parents, S — polarity value).

[ Word | Polarity ]
Nie 0
Nie drazni nawet po calym dniu . | 1
nawet 0
po catym dniu 0
catym dniu 0
0

Table 2: Phrase- and word-level sentiment values to
be predicted for the example sentence shown in Table
1.
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3. The Model
3.1. LSTM Neural Networks

Different variants of Recurrent Neural Networks
(RNNs) have been widely used for many tasks in nat-
ural language processing such named entity recogni-
tion (Lample et al., 2016) or text classification (Lai
et al., 2015). RNNs can process arbitrarily long in-
puts by recurrent application of a transition function
over hidden states. The most common form of an
RNN transition function is an affine transformation
followed by a hyperbolic tangent function:

he = tanh(Wy, + Up,_, +b) (1)

A potential advantage of RNNs in processing natu-
ral language stems from their ability to use informa-
tion gathered sequentially from previous states, corre-
sponding to units of language such as words or phrases
when dealing with current input. In theory this makes
them capable of tracking a long history of previous
states when processing sequences of words. In prac-
tice, however, RNNs may they suffer from the so-
called vanishing gradient problem, which means that
during training the gradient can grow or decay ex-
ponentially over long sequences (Bengio et al., 1994;
Hochreiter, 1998). The LSTM architecture (Hochre-
iter and Schmidhuber, 1997) addresses the problem
of learning long-term dependencies by introducing a
memory cell that is capable of preserving previous
state information over relatively long sequences of
states.

While there are many different types of LSTMs, in
our work we used a variant described by the following
equations:

iy = o(Ulzs + Whsy_1 +bY),
fo=o(Ufz, + Whsi_1 + b)),

or = o(U°zy + Wsp_1 +°),

gy = tanh(U9z; + W9s,_1 + b9),
ce=ct10 ft+ g @iy,

st = tanh(ct) e oy

(2)

where z; is input at current time step, i; is an input
gate, f; a forget gate, o, an output gate and ¢ stands
for LSTM memory. The gating mechanism controls
how much information from past states and memory
is used at the current time step.

3.2. Tree LSTMs

One problem with applying classical LSTMs in
natural language processing is that similarly to stan-
dard RNNs;, they are linear chains, which makes them
difficult to use directly for processing more sophisti-
cated linguistic structures. For example, syntactic an-
notation which could be useful in predicting more sub-
tle aspects of sentiment of the kind illustrated above
usually takes the form of hierarchically-structured de-
pendency or constituency trees rather then linear se-
quences of word segments. In order to process tree-
structured data, the standard LSTM architecture has
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Figure 2: A Tree LSTM network architecture.

been elaborated into the so-called Tree LSTMs (Tai
et al., 2015). In general, Tree-Structured Recurrent
Neural Networks expand basic RNNs by creating a
way to plug in more than one previous state to a hid-
den unit at given time step as shown in Figure 2. Each
neural network unit takes an input x; and emits a la-
bel y; as in a standard RNN. Additionally, each such
unit can take more than one previous hidden state.
Tree-LSTMs also add their memory-handling capaci-
ties to this elaborated architecture.

3.3. Tree LSTM label classification

As already mentioned, in sentiment treebanks, sen-
tences are represented as trees whose (selected) com-
ponents are also labelled for sentiment. Generally, in
a Tree LSTM network used for language processing
tasks which can be described as label classification,
each sentence component is a unit x; represented by
a distributional vector known as its (word) embedding
(Mikolov et al., 2013). The hidden states of network
units which represent the leaves of a syntactic sentence
tree are embeddings of the corresponding words. Net-
work units which represent non-terminal tree nodes,
have hidden states representing the embeddings of the
entire subtree which they have. By computing an ac-
tivation function on such hidden states, we obtain a
sentiment label of an entire subtree. The hidden state
of the root unit is the embedding of the entire sentence
and its label is the label of the entire sentence.

Tree LSTM architectures may vary with respect to
the exact way in which the child units are incorporated
into their respective parents. In this paper we consider
the so-called Child-Sum Tree-LSTM architecture (Tai
et al., 2015) and present a new architecture, which we
call a Sequential Child-Combination Tree-LSTM and
evaluate its performance in syntax-based sentiment
analysis. The Child-Sum Tree-LSTM model (ibid.)
provides a way of representing dependency syntax re-
lations between parent word nodes and their children
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and it is based on the following transitions equations:

Sch = E Schy s

k
g = U(Uil'j + Wisg, +bY),
fik =o(Ulz; + Wsep, +b),
0j =0 (Uz; + W°sen + b°),
g; = tanh(U9z; + W9s.p, + b9),

Cj:ZCk'fjk + 95 ®ij,
k

3)

s; = tanh(c;) @ 05,

where k is a subscript of k-th child of node j and s¢p,
is its hidden state. There is no theoretical limit on
the branching factor of the syntactic trees to be rep-
resented in this architecture. Moreover, as hypoth-
esized by its authors, this model may be capable of
learning parameters W¢ which ‘open’ the input gate
i; for semantically discriminative content words such
as adjectives or verbs and ‘close’ it for low-information
function word inputs such as determiners.

3.4. Sequential-Child-Combination

Tree-LSTM

L
]

Figure 3: Sequentially combining children with their
parents in an LSTM network.

The key contribution to LSTM-based models for
sentiment analysis proposed in the present paper is
what we call a Sequential Child-Combination Tree-
LSTM architecture. Formally, in order to combine,
children nodes with their parents, we follow the tran-



sition equations specified below:

L =0(Ulzy + Wsep, +bY),

fiu = o(Ufzy + I/stch1 + b,
0y, = Uz + Wsen, +0°),

gi, = tanh(U9zy + Wsep,, + b9),

Ciy = Ct—1 .fil + Giy ® iy,

5

Si; — tanh(cil) ® 0,
= U(U’sZl + Wisch2 + bi),
= o (Ul sy, +W/sen, +9),
=0(U°si; + WOSschy +0°),

Jis :t nh(U9s;, + W9sqp, + b9),

Ciy = Ciy .fiz +gi2 ® %y,

Sip = tanh(ciz) ® Ojy 5

(4)

i, = J(Uisn_l + Wischn + bi),
fi, =0(Ulsp_14+Whsg,, +b),
0i, =0 (U°sp_1+ W?s¢p,, +0°),

gi,, = tanh(U9s,,—1 + W9s.p, + b9),
Cip = Cip_y ® fi,, + Gip ® iy,

s;, = tanh(c;, ) @05, ,

Gt = Ciy,

Sj = Sin
where s;, is an intermediate state obtained after com-
bining with its k-th child. That means that we can
see each Tree-LSTM unit as a linear LSTM chain rep-
resenting each child respectively with ¢ as one global,
linearly updated memory.

Even though dependency trees do not explicitly en-
code word order information, the proposed method of
combining them allows for creating embeddings com-
posed of subphrases or single word dependents of par-
ticular children and ‘remember’ them in the learning
process, which is not directly possible in case of the
Child-Sum Tree-LSTM architecture. Moreover, word
order information can be preserved in our model by
combining first the children that occur earlier in the
sentence. The intuition behind this approach is to pro-
vide a mechanism of encoding the relations between
the parent and its particular children in a way which is
potentially more subtle and more discriminative than
the Child-Sum Tree-LSTM model. To phrase it differ-
ently, we combine parents with their children from left
to right by combining the intermediate embeddings
of the roots of child phrases with the current parent
phrase. The final result of this process is a composi-
tional embedding of an entire sentence. This process
is further illustrated in Fig. 3 and in Fig. 4, where
it is applied to the example sentence from the PolE-
val sentiment treebank introduced above. Although it

is possible to manage the memory of such a network
model in a different way, for example by using a sep-
arate memory for each unit, our best results were ob-
tained using the single global memory presented here.

2
i 2.
embedding(drazni) embedding(drazni)
embedding(nie embedding(po o en‘bedding(po,
9l .) 9(PO)  embedding(nie) (dniu, calym))
embeddlng(nawet) embedding(nawet)
embedding(dniu)
embedding(catym)
3. 4.
embedding(drazni, nie,
embedding(drazni, nie) g >\d
'\1 embedding(po,
embedding(po, (dniu, catym))
(dniu, catym))

embedding(nawet)

5.

embedding(drazni, nie, nawet, (po, (dniu,

catym)))

Figure 4: An example of combining dependent phrases
with their parent in the Sequential Child-Combination
Tree-LSTM model.

4.

The model proposed in this paper was evaluated
on the held-out test set provided in the PolEval 2017
competition. As baselines, we used a simple, linearly
chained LSTM network, Conditional Random Fields
(Lafferty et al., 2001) with rather standard contex-
tual and word-shape features and no syntactic infor-
mation as well as the Child-Sum Tree LSTM model
mentioned above. The result submitted to the single-
blind evaluation stage of the PolEval competition was
approx. 76,80% accuracy of sentiment label assign-
ments. In Table 3 we report the best results obtained
on the same test set with a modification of our orig-
inally submitted system, which involved lemmatizing
the word tokens in the training and test sentences.
After this modification, our approach seems to have
slightly outperformed the Child-Sum Tree model on
the PolEval test set. It is interesting to note that
some improvement resulting from lemmatization was
consistent across the different approaches we tested.

Evaluation

2We have used the TensorFlow framework to implement
the LSTM models described in this paper. The source
code of our implementation is indicated in the Availability
section of this paper.
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| Cambria, E., B. Schuller, Y. Xia, and C. Havasi, 2013.

New avenues in opinion mining and sentiment anal-

ysis. IEEFE Intelligent Systems, 28(2):15-21.

Hochreiter, Sepp, 1998. The vanishing gradient prob-

lem during learning recurrent neural nets and prob-
lem solutions. International Journal of Uncer-

tainty, Fuzziness and Knowledge-Based Systems,

| Model | Score
LSTM 70,70%
Lemmatized CRF 75,63%
Child-Sum Tree-LSTM 77,69%
Sequential Child-Combination
Tree-LSTM 76,80%
Lemmatized Child-Sum Tree-LSTM 79,35%
Lemmatized Sequential Child-Combination
Tree-LSTM 79,89%

6(02):107-116.
Hochreiter, Sepp and Jiirgen Schmidhuber, 1997.

Table 3: Sentiment classification accuracy on the Pol-
Eval test set.

5. Conclusions and future work

In the present paper we described a Sequential
Child-Combination Tree-LSTM model for the task of
syntax-based sentiment analysis in Polish. The the-
oretical motivation behind this model was to provide
a relatively robust mechanism of considering syntac-
tic relations between words and phrases in natural
language sentences as a potentially relevant feature
in sentiment detection. In particular, we proposed
a mechanism of compositionally generating governor
or parent-phrase embeddings from the embeddings
of their dependent phrases, which preserves some of
the compositionality of the latter type of units. The
results obtained for the PolEval 2017 test set were
promising, but given the rather limited size of these
datasets, it would be necessary to run similar com-
parisons on larger sentiment treebanks, in order to
validate the proposed approach of tracking the syntac-
tic and semantic compositionality of sentences in SA.
The method described in this paper can be applied to
dependency-parsed data in other languages, possibly
also in other tasks, such as measuring the semantic re-
latedness of sentence pairs, where syntax-driven deep
learning approaches proved to be particularly success-
ful (Tai et al., 2015).

6. Availability

The source code of the system described in this
paper, together with its trained models are available
at https://github.com/michal-lew/tree-1lstm.
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