Polish Language Sentiment Analysis with Tree-Structured Long Short-Term
Memory Network

Norbert Ryciak

(1) Faculty of Mathematics and Information Science, Warsaw University of Technology
Koszykowa 75, 00-662 Warsaw, Poland
(2) Institute of Computer Science, Polish Academy of Sciences
Jana Kazimierza 5, 01-248 Warsaw, Poland
n.ryciak @mini.pw.edu.pl

Abstract
This article shows newly-established state-of-the-art results in sentiment analysis over Polish language. It is the first time to report the
results of applying tree-structured neural network for sentiment analysis for Polish language. We present the outcome obtained on the
first freely available Polish sentiment treebank dataset with fine grained labels. The dataset consists of sentences in dependency trees
format with sentiment labels over all nodes of the tree which represent phrases. The task is to predict phrase-level sentiment - including
whole sentences and single tokens. This is the winning solution of the task 2 of PolEval 2017 - SemEval-inspired competition for natural

language processing tools for Polish.

1.

Sentiment analysis is one of the important aspects of
natural language processing domain. It deals with detect-
ing the sentiment of human-generated text. There are var-
ious variants of this problem. Firstly, there may be var-
ious study subjects: documents (long text), sentences or
phrases. Secondly, there can be different outcomes ex-
pected - just positive/negative, fine-grained with miscella-
neous precision or continuous describing strength of senti-
ment. In this article we study phrase-level sentiment anal-
ysis with the negative/neutral/positive scale.

There are many approaches to this problem and they
are constantly improved. We can distinguish four groups
of methods which can be viewed as stages of develop-
ment with ascending complexity. The most simple solu-
tions (working well only on simple data) are based on pre-
defined dictionaries of sentiment-labeled words. Having
specified the list of words with human labeled sentiment
we determine text sentiment based on occurrence of these
words. This can be also extended by adding some pre-
defined heuristics improving the results for more complex
texts.

The approach described above is far from satisfying in
general. Thus, the natural development direction for senti-
ment recognition tools is machine learning (Melville et al.,
2009). Further approaches treat sentiment prediction as
classification task (or regression when we have continu-
ous sentiment scale). First level of complexity is based on
conventional classification. In this case we have to vector-
ize our data first. It means that we need to represent each
text as a vector of features, so that we obtain representa-
tion matrix of set of texts. This is often crucial element of
this approach - the way in which we create feature vectors
strongly influence the results. The second step is finding
a classifier which will perform best, which is not trivial
either, although there are some common solutions in this
aspect like Naive Bayes classifier or Support Vector Ma-
chines. These solutions are widely used in practice and
often give satisfying results. However, they have many

Introduction

402

limitations and cannot cope with the more complex texts
(Pang et al., 2002).

The next stage of development are methods making use
of structure of the text. This is natural approach because it
is apparent that the order of words is important for text
meaning and, in particular, sentiment. Thus, instead of
bag-of-words we treat sentences as a sequence of words
and model the data using machine learning models dedi-
cated for this kind of data. This is the case of structured-
prediction learning problem, where the object to classify
is a sequence of basic entities. However, there are two is-
sues in this case. Firstly, these entities - words in text case
- have to be represented as vectors. Secondly, we have
to choose the appropriate model. Notwithstanding, in this
case the choice is simpler than before - we can use deep
learning models - the recurrent neural networks (RNNs)
which are known to perform well in this kind of problem
(Mikolov et al., 2010). RNN scans the words one after an-
other with propagating forward information collected from
already seen words. At the end of a sequence the network
gives prediction. This model requires words represented as
vectors. The standard choice for RNNs is word2vec model
(Mikolov et al., 2013), as is for the next method.

Currently, the most sophisticated approaches utilize
deeper look at the sentence structure - not only the order of
the words, but also the structure in the sense of linguistic
information (Socher et al., 2013). Specifically, we use tree-
structured representation of sentences (or phrases). In sen-
timent analysis two kinds of trees are used - dependency
and constituency and both of them can lead to compara-
ble results of sentence sentiment classification (Tai et al.,
2015). The models used in this approach belong to deep
learning methods, and are the generalizations of the re-
current neural networks. Tree structured neural networks
“read” sentence along branches from leafs to the root trans-
ferring information from children to parents, in each node
aggregating information from its subtrees. In the end, the
network gives prediction for a sentence when it reaches the
root. This method requires that words are represented as

vectors and word2vec model is a commonly used solution.

In this paper we describe Tree-Structured Long Short-
Term Memory Network (Tree-LSTM) (Tai et al., 2015)
which performed best in the task of phrase-level sentiment
analysis over Polish dependency sentiment treebank. This
is the winning solution of sentiment analysis task at the
PolEval 2017 competition'. We provide detailed descrip-
tion of the model and we evaluate its performance with
comparison to other methods.

2. Tree-Structured Long Short-Term
Memory Network

2.1. Long Short-Term Memory Network

Recurrent neural networks (RNNs) take sequences of
arbitrary length as input, where elements of a sequence are
represented as vectors. RNN takes entities sequentially and
in each time step it uses the information gathered earlier.
Formally, in time step ¢ it calculates hidden state h; as a
function of current input vector z; and the previous state
hi—1. The prediction for a sequence is calculated basing
on hidden state of the last element (it can also give an out-
put for each element of a sequence based on corresponding
hidden state).

Long Short-Term Memory Network - LSTM (Hochre-
iter, 1998) is one of the most widely used representative of
recurrent neural networks because of its effectiveness. The
idea behind this model is to deal with the problem of catch-
ing dependencies among entities which are not close in a
sequence, i.e. strengthen the network ability to recognize
salient patterns in long sequences. Information is propa-
gated by two channels - hidden state as usual and memory
component. They are calculated with the use of sophisti-
cated mechanism defined with following formulas:

£ :U(W(f)xt—i—U(f)ht_l+b(f)), (1
iv = (WO, + UO Ry +50), @)
u; =tanh (W(“):ct + g, 4 b(“)), 3)
et =i O up + fr © cp—1, 4
or = (WO, + UOhy_y +49), 5)
hs =o; ® tanh (ct), (6)

where W () are matrix parameters - network weights, (")
are biases vectors and z; is ¢-th input vector. Despite the
complexity of the equations, all components have easily
interpretable role. f; is “forget gate layer” and it is a fil-
ter - it decides how to keep information from the past. It
gives the features weights of their predicted importance.
i called “input gate layer” is for filtering input data - it is
responsible for determining which features and to what ex-
tent we want to use. Well learned network should be able
to recognize importance of features. u, transforms input in
order to represent it in adjusted form for further process-
ing. It takes into account information gathered earlier. ¢,
is memory cell - this is the "box” responsible for keeping

"http://poleval.pl/

403

all and only important information through a long time. It
is calculated with the use of two elements: pieces of infor-
mation stored in that moment and the new ones currently
provided. Thus, it is the sum of transformed input filtered
by input gate and previous memory state filtered with for-
get gate. This memory state is passed forward. o; is again
a kind of filter, which can be called "output gate”. It is used
to calculate hidden state h; which is the transformation of
newly established memory state with features multiplied
by o;. It is transmitted forward and to the output calcula-
tion for currently considered element at the same time.

2.2. Tree-LSTM

Tree-structured neural network is a kind of recurrent
neural network designed for tree-structured data and is a
generalization of recurrent neural networks (RNNs). It
works on the principle of propagating information along
branches of a tree. The algorithm begins in leaves and
moves upwards aggregating information in each node from
its subtrees. In the end, network reaches root of the tree and
gives an output - prediction for considered tree-stuctured
observation. Especially, Tree-Structured Long Short-Term
Memory Network is the generalization of LSTM and it was
introduced in (Tai et al., 2015).

As in standard LSTM information is propagated
through two channels - memory cell ¢; and hidden state
h:. However, the mechanism is adapted to tree topology.
Thus, recursion in tree-LSTM is done through aggregation
of information from all subtrees of currently visited node
taking into account node’s content. In case of dependency
parse tree of sentence the node corresponds to a word. For-
mally, tree-LSTM unit is defined with the following formu-
las, where j is the node’s index in tree and C'(j) is set of
children of node j:

fix =0 (WDa; + UD by +4D), fork € CG) ()

= 3 ®)
keC(j)
o = (W s + UOh; +), (10)
u; = tanh (W(”)mj +UWh; + b(“)), (1D
cj =t; O u; + Z fik © ck, (12)
keC(4)
hj =0j ® tanh (Cj)7 (]3)

where W) and b(") are network parameters. Input x;
for current node is a word represented as vector - the natu-
ral choice is word2vec embeddings. As in standard LSTM
we have a filter for memory but in tree-structured data we
have many “forget gates” f;;, - all of them are calculated
individually for each subtree (Eq. 7). Thus, based on cur-
rent input =; and subtree hidden state the network filters
information from each branch in a special way. This so-
lution allows treating each sub-phrase in individual way,

passing different information that is found important from
different children.

All other layers appear only once. In sequential LSTM
they are calculated using previous hidden state and mem-
ory cell but in tree there can be an arbitrary number of them
- one for each child. Thus, instead of hidden state, we use
the sum of subtrees’ hidden states and then i;, o; and u;
are calculated in the same way as in LSTM. The interpre-
tation is preserved - we pass current and past transformed
and filtered information through some “gates” with differ-
ent roles. Then we update memory state ¢; and we aggre-
gate children’s memory by taking the sum of memory cells
that passed through “forget gate” - multiplying ¢, by fjx
for k € C(j). In the end, we calculate node’s hidden state
h; identically as in LSTM.

3. Experiments
3.1. Data

Dataset used in this work consists of two kinds of
texts: product reviews of two types - perfumes and cloth-
ing (965 sentences), and sentiment-bearing sentences from
the Skladnica > (265 sentences). This is a dependency
treebank with sentiment annotations. These sentences
were parsed using the Polish dependency parser mod-
els available online ®. For each sentence in the tree-
bank, sentiment of each phrase (whole sentences and
sub-phrases of sentences) has been assigned by a lin-
guist. Sentiment of each leaf word has been labeled ac-
cording to Polish sentiment dictionary, an extension of
http://zil.ipipan.waw.pl/SlownikWydzwieku/ and also ver-
ified manually. Sentiment labels of both phrases and leaves
include three classes: neutral, positive and negative. The
treebank consists of 12 861 sentiment-annotated phrases
and words from the parse trees of 1 200 sentences. Test
data consists of 350 sentences (5047 subphrases) of per-
fumes and clothing reviews.

Neural networks included in the research (sequential
LSTM and Tree-structured LSTM) required vector rep-
resentations of words. For this purpose 300-dimensional
word2vec vectors trained on orthographical word forms on
combination of Polish Wikipedia and the National Corpus
of Polish were used”.

3.2. Experiment settings

We compere four models: naive Bayes classifier, sup-
port vector machine (SVM), LSTM network and Tree-
LSTM (own implementation in Theano® library available
on GitHub®). The former two work on matrix-shaped data,
the third one take as input sequences and the last is dedi-
cated to trees.

The performance of naive Bayes classifier and SVM
was tested using various representation - combinations of
words counts weighting with and without dimension re-
duction (by manipulating vocabulary set and with SVD

*http://treebank.nlp.ipipan.waw.pl/

3http://zil.ipipan.waw.pl/Sk%C5%82adnica

“Trained vectors can be found at
http://mozart.ipipan.waw.pl/ axw/models/orth/

Shttp://deeplearning net/software/theano/index.html

®https://github.com/norbertryciak/poleval

decomposition). The best results were obtained with the
simplest solution - words counts without any weighting or
dimension manipulation.

Neural networks - sequential and tree-structured
LSTMs were trained analogously. First, there was sepa-
rated validation set made of 165 sentences in order to de-
termine optimal number of training epochs. Learning was
stopped when there was no improvement of accuracy on
validation set through 5 epochs. Both networks were tested
with the hidden state of size 100 (experiments suggested
this value to be optimal - as showed in table 1). In both
cases stochastic gradient descend was used as learning al-
gorithm and word vectors were tuned. We don’t use any
kind of regularization as we did not notice the improve-
ment. The only difference is in batches construction. In
case of sequential LSTM the batch size was constant and
equal to 10. For Tree-LSTM every batch was single sen-
tence, thus the number of labeled phrases in batch was a
variable.

| Hidden state dimension || 50 | 100 | 150 | 200 |

LSTM 849 | 85.2 | 845 | 83.0
TreeLSTM 84.4 | 85.1 | 83.5 | 84.0

Table 1: LSTM and TreeLSTM accuracies on validation
set depending on the hidden state dimension. Validation
part was made by 10% of observation from training set. In
both cases 100-dimesnional hidden state is optimum.

3.3. Results

During the experiments it turned out that learning mod-
els only on product reviews subset gave better results.
That means that including the remaining 265 sentences of
Skladnica in training set made the results worse. It is for
sure the consequence of the fact that test set consists only
of product reviews of the same type and that was already
seen during the analysis of validation set. It shows how
sentiment analysis is domain-sensitive. We would expect
from the best models to be resistant to this issue but in this
case it did not happen. We can suppose that it results from
too small training sample that does not allow models to
generalize well.

The label values distribution in test set is as follows:
73% neutral, 20% positive and 7% negative. Thus, 73%
can be viewed as a baseline. Our results are summarized in
Table 2. The table shows that tree-structured LSTM gives
the best results among considered models. However, its su-
periority over sequential LSTM is not definite. We can also
notice that both deep neural networks making use of text
structure have a definite advantage over classifiers basing
on bag-of-words model.

More detailed analysis of TreeLSTM performance is
shown in Table 3. As we can see the best scores were ob-
tained for the most frequent class, that is neutral.

Additionally we show in Table 4 some examples where
both Naive Bayes and SVM failed but TreeLSTM pre-
dicted sentiment properly.

| Method

Phrase structure | Accuracy |

Naive Bayes | vector 75.4
SVM vector 75.1
LST™M sequence 79.2
Tree-LSTM | tree 79.5

Table 2: Test set accuracies. Phrase structure describes
the format of data used by corresponding method. Models
were learned only on subset of 965 sentences of product
reviews.

Class | precision recall F1 | support
negative | 0.53 0.14 0.22 | 365
neutral 0.83 0.93 0.88 | 3666
positive | 0.65 0.55 0.59 | 1016

Table 3: Classification report for TreeLSTM.

| Phrase | Sentiment |
zaskakujacy zapach positive
og6lnie bardzo udane positive
jeden z najciekawszych flakonéw,
jaki mozna by sobie wyobrazic¢
na swojej pétce positive
Moim zdaniem zapach
wyrdzniajacy sie z ttumu positive
niewygodny flakonik negative
bo obawiam sie, ze bedzie
szybko ulatywat negative

Table 4: Examples of phrases for which both NB and SVM
failed but they were correctly classified by
TreeLSTM. Most of them have positive sentiment.

4. Conclusion

In this paper, we presented the winning solution for
sentiment analysis task - tree-structured Long Short Term
Memory network, and compared it with a few other meth-
ods. We demonstrated the effectiveness of deep learning
model utilizing the linguistic structure of the text - depen-
dency trees.

5. References

Hochreiter, Sepp, 1998. The vanishing gradient problem
during learning recurrent neural nets and problem solu-
tions. Int. J. Uncertain. Fuzziness Knowl.-Based Syst.,
6(2):107-116.

Melville, Prem, Wojciech Gryc, and Richard D. Lawrence,
2009. Sentiment analysis of blogs by combining lexi-
cal knowledge with text classification. In Proceedings
of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD *09. New
York, NY, USA: ACM.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey
Dean, 2013. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

405

Mikolov, Tomas, Martin Karafiat, Lukas Burget, Jan Cer-
nocky, and Sanjeev Khudanpur, 2010. Recurrent neu-
ral network based language model. In Interspeech, vol-
ume 2.

Pang, Bo, Lillian Lee, and Shivakumar Vaithyanathan,
2002. Thumbs up? sentiment classification using ma-
chine learning techniques. In Proceedings of EMNLP.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts, 2013. Recursive deep models for semantic com-
positionality over a sentiment treebank. In Proceedings
of the 2013 Conference on Empirical Methods in Nat-
ural Language Processing. Seattle, Washington, USA:
Association for Computational Linguistics.

Tai, Kai Sheng, Richard Socher, and Christopher D.
Manning, 2015. Improved semantic representations
from tree-structured long short-term memory networks.
CoRR, abs/1503.00075.

