Towards the evaluation of feature embedding models of the fusional languages

Alina Wroblewska, Katarzyna Krasnowska-Kieras, and Piotr Rybak

Institute of Computer Science, Polish Academy of Sciences
Jana Kazimierza 5, 01-248 Warsaw, Poland
alina@ipipan.waw.pl, kasia.krasnowska|piotr.cezary.rybak@gmail.com

Abstract
The main component of a neural network approach is a dense vector representation of features, i.e. feature embedding. Various feature
types are possible, e.g. words, part-of-speech tags. In this paper we investigate what should be used as features in estimating embedding
models of the fusional languages — tokens or lemmata. Furthermore, we research the methodological question whether the results of
the intrinsic evaluation of embeddings are informative for downstream applications, or the embedding models should be evaluated
extrinsically. The presented experiments are conducted on Polish — a fusional Slavic language with a relatively free word order. However,
the evaluation results can be approximately generalised to other Slavic languages, because the studied problems are common to them.

1.

Neural networks are very successful in various lan-
guage processing tasks, e.g. dependency parsing (Chen and
Manning, 2014; Kiperwasser and Goldberg, 2016; Andor
et al., 2016), sentiment analysis (e.g. Iyyer et al., 2015).
The main component of a neural network is a dense vector
representation of features, i.e. feature embedding. Various
feature types are possible, e.g. word forms, part-of-speech
tags. The particular feature types are represented as vec-
tors of presumably different number of dimensions (more
dimensions for word features and less for part-of-speech
features). Features represented as d-dimensional vectors
are embedded into a d-dimensional space. Different fea-
ture types require different vector spaces.

According to the concept of feature embeddings, some
features sharing common information should have simi-
lar vectors and thus feature similarities can be captured.
For example, some Slavic languages make a clear distinc-
tion between perfective and imperfective aspects, and con-
tain pairs of the imperfective and perfective verbs, e.g. in
Russian cbemaTh VS, ¢hecTh, in Polish ZJADAC vs. ZJIESC
(‘to eat’). As the verbs marked for different aspects tend
to share most of their valence and selectional preferences,
they should be represented with similar vectors.

From the perspective of foregoing research and pro-
vided experimental results, it is indisputable that embed-
ding models of the isolating languages, such as English,
can be trained on tokens (e.g. Mikolov et al., 2013a; Pen-
nington et al., 2014). Other languages largely adopt proce-
dures of estimating and evaluating feature embeddings pro-
posed for English. However, it is not obvious what should
be used as features in estimating embeddings of the fu-
sional languages' — tokens, lemmata, or maybe stems.

In experiments on Russian, the embedding models are
estimated on stems (Leviant and Reichart, 2015) or tokens

Introduction

'According to Aikhenvald (2007:4), in "fusional — some-
times misleadingly called (in)flectional — languages there is no
clear boundary between morphemes, and thus semantically dis-
tinct features are usually merged in a single bound form or in
closely united bound forms". For example, the suffixes -amu in
Russian gomamu (‘house’.inst.pl) and -ami in Polish domami
(‘house’.inst.pl) fuse the case and number information.

420

simplified with some language-specific rules (Vuli¢ et al.,
2017). The embedding models are then intrinsically eval-
uated on a dataset’> which is a translation of English Sim-
Lex999 (Hill et al., 2015) and consists of pairs of lemmata
re-scored by Russian speakers. In experiments on Polish
(Mykowiecka et al., 2017), the embedding models are
trained on tokens® or lemmata, and tested on pairs of lem-
mata from the publicly available thesauri or on a lemma-
based analogy dataset.

Therefore, the first research question addressed in our
paper is what should be used as features in training the em-
bedding models of the fusional languages — lemmata or
tokens* (see Section 2.)? Lemma embeddings seem to be
advantageous from the point of view of the intrinsic eval-
uation. Token embeddings, in turn, seem to be helpful
for downstream applications. The second research prob-
lem concerns the validation methodology. Are the results
of the intrinsic evaluation of embeddings sufficiently in-
formative for downstream applications (see Section 3.)?
Or should the embedding models be evaluated in vivo in
the realistic scenarios (see Sections 4. and 5.)? The pre-
sented evaluation experiments are conducted on Polish —
a fusional Slavic language with a relatively free word or-
der. However, the evaluation results can be approximately
generalised to other Slavic languages, because the studied
problems are common to them.

2. Feature embeddings
2.1.

When considering a fusional language such as Polish,
it is important to make a distinction between possible types
of embeddings, including vector representations of tokens,
lemmata, inflections, and character n-grams.

Embedding models

2http ://www.leviants.com/ira.leviant/
MultilingualVSMdata.html#SimLex999

3Tokens are automatically lemmatised, in order to enable
the comparison with the test sets.

“Throughout this paper, we use the following terms: lemma
for a word’s base form (e.g. KOT ‘cat’); foken for a string of char-
acters in running text (e.g. kota ’cat’); inflectional form/inflection
for a token assigned a morphosyntactic interpretation (e.g.
kota.subst:acc:sg:m2, kota.subst:gen:sg:m2).

Token embedding model A model for tokens is the most
straightforward to obtain: the only required resource and
tool are a possibly big collection of texts and a tokeniser.
In the resulting embedding space, each distinct token ob-
tains its own vector. For instance, there is no single vec-
tor corresponding to the “concept” of POCIAG ‘train’, but
separate vectors for each distinct token of POCIAG that
appears in the training data: pociqg (‘train’.sg:nomj|acc),
pociqgu (‘train’.sg:gen|loc), pociqgami (’train’.pl:inst) etc.
Note that under this approach, all syncretic inflectional
forms of the same lemma (as well as those homonymous
between distinct lemmata) receive a common embedding.

Lemma embedding model Another type of model,
more tool/resource-dependent, is an embedding mapping
lemmata into a vector space. In order to induce such
a model, either an existing large lemmatised corpus or
a lemmatiser is necessary. The text fed to the model while
training is then a sequence of lemmata assigned to con-
secutive tokens. The resulting embedding model shares
vectors between text occurrences belonging to the same
lemma rather than to syncretic’/homonymous word forms,
but its quality will depend on the quality of the corpus an-
notation or the lemmatiser.

Inflection embedding model A third possible approach
to embeddings for a fusional language is to employ a mor-
phosyntactically annotated corpus or a tagger in order to
induce vectors for inflections, i.e. tokens paired with their
respective morphosyntactic interpretations. This approach
is the most resource/tool costly and, since automatic mor-
phosyntactic tagging of Polish is a difficult task that still re-
quires improved solutions (Kobylifiski and Kiera$, 2016),
it seems the most prone to propagation of errors.

Subword embedding model Apart from models trained
on word forms, there are some experiments on training em-
beddings on parts of words, e.g. character n-gram embed-
ding model (Bojanowski et al., 2016). This model is dedi-
cated for morphologically rich languages with large vocab-
ularies and a high rate of rare words. To estimate a subword
embedding model, a large collection of tokenised texts is
required. Tokens are represented as bags of character n-
grams. Character n-grams are first represented as vectors
and then the representation of each token is estimated as
the sum of the appropriate n-gram embeddings, e.g. for
n = 5, the token pociqgami (‘train’.inst:pl) is represented
as the sum of the vectors of <poci, pociq, ociag, ciqga,
iqgam, qgami, gami>, and <pociqgami>.

2.2. Experimental setup

We examine token embeddings 7, lemma embeddings
L, and subword embeddings S in our studies. All tested
vectors are estimated on the same collection of textual
data from Polish Wikipedia and National Corpus of Polish
(Przepiorkowski et al., 2012). The details of preprocessing
(tokenisation and lemmatisation) the dataset are described
in (Mykowiecka et al., 2017). As training data are either
tokenised or lemmatised, the vocabulary sizes of feature
embedding models estimated on these datasets differ con-
siderably. The vocabulary sizes of token, lemma, and sub-
word embeddings are 2.12M, 1.55M and 5M, respectively.

421

Token and lemma embeddings We use the pre-trained
token 7 and lemma £, embeddings’ (Mykowiecka et al.,
2017), for d being the vector size. The vectors were derived
with Gensim® (Rehtifek and Sojka, 2010) — a Python im-
plementation of CBOW and Skip-gram models (Mikolov
et al., 2013a). The vectors selected for our experiments
were estimated with the following parameters:

e dictionary parameters: trimming the items occurring
less than 5 times in training data,

e fraining parameters: the vector size of 100 or 300;
the context window of 5; 10 training epochs; opti-
misation heuristics: hierarchical softmax or negative
sampling; negative samples of 5.

Subword embeddings The subword vectors S, are es-
timated with fastText library’ (Bojanowski et al., 2016).
FastText is an extension of the continuous Skip-gram
model (Mikolov et al., 2013a). The subword embeddings
are trained with the following parameters:

e dictionary parameters: trimming the items less fre-
quent than 5; character n-grams for 3 < n < 6,

e fraining parameters: the vector size of 100 or 300;
the context window of 5; 10 training epochs; negative
sampling; negative samples of 5.

3. Evaluation methodology

There are two standard ways of evaluating the embed-
ding models: intrinsic evaluation and extrinsic evaluation.

3.1.

Intrinsic evaluation consists in testing a model against
a dedicated test set. There are two standard bench-
marks for word embeddings: determining word similar-
ity/relatedness (e.g. Finkelstein et al., 2002; Hill et al.,
2015) and word analogy solving (e.g. Mikolov et al.,
2013b). The word similarity evaluation estimates the se-
mantic proximity of two words (e.g. with cosine), and cor-
relates this score with the human judgements of the word
similarity. The methodology of similarity testing has re-
cently been criticized (e.g. Faruqui et al., 2016; Chiuet al.,
2016), because of the uncertain indication of the impact of
embeddings on downstream applications.

The word analogy method, in turn, assumes that lin-
ear relations between pairs of words (e.g. king—man and
woman—queen) are indicative of the embedding quality.
According to this method, the vector of one word (e.g.
queen) can be estimated of the vectors of the remaining
words (i.e. king - man + woman). This methodology is
questioned as well (e.g. Linzen, 2016), because "informa-
tion not detected by linear offset may still be recoverable
by a more sophisticated search method, and thus is actually
encoded in the embedding" (cf. Drozd et al., 2016).

Intrinsic evaluation

5dsmodels.nlp.ipipan.waw.pl

6https://radimrehurek.com/gensim

"https://github.com/facebookresearch/
fastText

Despite criticism this evaluation method is still widely
used. Regarding the intrinsic evaluation of Polish embed-
dings, an extensive study of synonymy and analogy recog-
nition is presented in (Mykowiecka et al., 2017). Accord-
ing to their results, the intrinsic evaluation is appropriate
for investigated tasks. However, there are no clues that it
is informative for other NLP tasks which to a lesser extent
rely on synonymy and analogy recognition.

3.2. Extrinsic evaluation

Extrinsic evaluation consists in integrating a model
into a sophisticated NLP task and verifying the impact on
the results of this task. According to our knowledge, there
are no experiments on evaluating Polish embeddings ex-
trinsically. Two extrinsic evaluation settings are thus con-
sidered here: morphosyntactic disambiguation (Section 4.)
and dependency parsing (Section 5.).

4. Morphosyntactic disambiguation

The first extrinsic evaluation context considered in this
paper is that of morphosyntactic disambiguation (MD).
The task of morphosyntactic disambiguation is formulated
as follows: given a sequence of tokens together with their
respective sets of possible morphosyntactic tags (most
commonly obtained from a morphosyntactic analyser), se-
lect a single, correct tag for each token. For tokens un-
known to the analyser, the set contains a special ign tag
and the task amounts to generating a tag instead of se-
lecting one from a provided set. Table 1 shows an exam-
ple token sequence corresponding to the sentence Mieszka
w Kotkowicach. “(S)he lives in Kotkowice.’, together with
possible tags and correct tags that a disambiguator should
choose for each token. The performance of an MD tool is
measured in terms of accuracy, i.e. the percentage of tokens
assigned the same tag as in gold standard data.

token possible tags correct tag

Mieszka subst:sg:gen:m3 | fin:sg:ter:imperf
fin:sg:ter:imperf
subst:sg:acc:m1
subst:sg:gen:m1

w prep:acc:nwok prep:loc:nwok
prep:loc:nwok

Kotkowicach | ign subst:pl:loc:n
interp interp

Table 1: A token sequence with possible and correct tags.

In order to examine the impact of embedding vectors
on MD accuracy, the vectors from 7 models are used as in-
put features for a morphosyntactic disambiguator.® The ba-
sic disambiguator has at its core a two-layer, bi-directional
LSTM network taking as input a sequence binary-valued
vectors representing the sets of possible morphosyntactic
tags of consecutive tokens. For a more detailed description
of the disambiguator, see (Krasnowska-Kieras, 2017). For
each cosidered token embedding model, the basic input for

8The £ models are not considered here since correct lemmata
for tokens are typically not yet determined at the MD stage of text
processing for Polish.

422

each token is extended by concatenation with its embed-
ding vector.

The PolEval task 1(A) training dataset is used (Ogrod-
niczuk et al., 2017) and following measures are calculated
for each feature configuration:

e accuracy in 10-fold cross-validation (91.59% for
the basic model),

e A: difference wrt. accuracy on folds’ training data
(a measure of overfitting; 2.6 for the basic model).

The results of the experiment are given in Table 2.

MD 100 300
acc A acc A
+7 (skipg-hs) | 94.54% | 2.6 | 94.97% | 2.7
+7T (skipg-ns) | 94.77% | 2.5 | 95.15% | 2.7
+7 (cbow-hs) | 95.01% | 2.2 | 95.22% | 2.4
+7 (cbow-ns) | 94.90% | 1.9 | 95.14% | 2.2
+S (skipg-ns) | 94.36% | 2.5 | 94.81% | 2.7

Table 2: Accuracy and A in 10-fold cross-validation for
100- and 300-dimensional embeddings estimated with
Skip-gram (skipg) or CBOW (cbow) and optimised with
hierarchical softmax (hs) or negative sampling (ns).

Augmenting the morphological information with vec-
tor embeddings brings about a substantial gain in accuracy,
resulting in error reduction wrt. the basic model ranging
from 35% to 43%. For each tested embedding model and
configuration (rows in Table 2), the performance of the dis-
ambiguator with 7300 vectors is consistently better than
with 7100 vectors, whereas the shorter vectors yield smaller
values of A. In the MD context, the Skip-gram models per-
form better when trained with negative sampling while the
CBOW ones work better when hierarchical softmax is em-
ployed, the latter yielding the best accuracy of 95.22% with
T300 vectors.

5. Dependency parsing

Dependency parsing is another task in which feature
embeddings are extrinsically evaluated. The main goal of
dependency parsing is to derive a syntactic analysis (rep-
resented as a directed tree) of a sequence of words, based
on their tokens, lemmata, part-of-speech tags, morpholog-
ical characteristics, and potentially other features, e.g. fea-
ture embeddings. We verify two scenarios: 1) the syntac-
tic analysis of some Polish sentences provided by a de-
pendency parser with the linear classifier (baseline) vs.
dependency parsers with the neural network classifiers;
2) analysing the Polish sentences using parsers integrated
with pre-trained feature embeddings. The quality of the de-
pendency parsers tested in these two scenarios is measured
with two standard metrics: UAS? and LAS'°.

YUAS (unlabelled attachment score) is the average accuracy
of assigning the correct head for each token in each sentence. We
provide both the micro- and marco-average scores.

OLAS (labelled attachment score) is the average accuracy of
assigning both the correct head and label for each token in each
sentence.

5.1.

Three dependency parsing systems are tested in our
experiments: MaltParser (Nivre et al., 2006), SyntaxNet
(Andor et al., 2016), and BIST parser (Kiperwasser
and Goldberg, 2016).'" All of them are transition-based
parsers, but they differ in the internal classifiers (linear vs.
non-linear), and in the feature extractors (hand-crafted vs.
feed-forward neural network vs. biLSTM).

MaltParser MaltParser’s classifier is based on the logis-
tic regression model (i.e. linear model) and its hand-crafted
feature model is built of the single features (e.g. tokens,
lemmata, part-of-speech tags) and double or triple combi-
nations of these single features.

SyntaxNet The parser uses a simple feed-forward neural
network with two hidden layers of 1,024 dimensions each
to make the transition decisions (i.e. non-linear classifier).
A transition is based on a rich set of discrete features (i.e.
tokens, part-of-speech tags, dependency arcs and labels in
the surrounding context of the state, k-best tags) extracted
in the current parse configuration. The feature set is fed
into the neural network, the first layer of which transforms
the sparse, discrete features into a dense, continuous em-
bedded representation. SyntaxNet is an extension of the ap-
proach by (Chen and Manning, 2014).

BIST parser The feature extraction in BIST parser is
based on a biLSTM encoder that is jointly trained with
the parser (end-to-end training). Each token is represented
as a biLSTM vector taking into account the sentential con-
text of the token. A concatenation of a few biLSTM en-
codings is used as the feature vector which is passed to
the non-linear scoring function (multi-layer perceptron).

Dependency parsing systems

5.2. First evaluation experiment

In the first experiment, the parsing results provided
by the baseline parser — MaltParser — are compared with
the results of the neural network parsers — SyntaxNet and
BIST parser. The results of 5-fold cross-validation can be
found in Table 3. BIST Parser achieves the best results and
outperforms the other two parsers. Since SyntaxNet per-
forms only slightly better than MaltParser, it is not used in
our further experiments.

parser LAS UAS
macro | micro | macro | micro
MALT 81.56% | 77.78% | 86.07% | 82.56%
SyntaxNet | 81.64% | 77.91% | 87.55% | 84.23%
BIST 83.01% | 79.70% | 89.07% | 85.95%

Table 3: Parsing results provided by MaltParser with
the linear classifier, and SyntaxNet and BIST parser with
the neural network classifiers.

5.3. Second evaluation experiment

In this experiment, we test whether integrating
the parsers with the pre-trained feature embeddings in-
creases the parsing quality. In order to augment MaltParser

T All parsers are trained on the extended version of Polish De-
pendency Bank (Wréblewska, 2014), which consists of over 16K
dependency trees.

423

with token embeddings, the feature model of MaltParser is
extended in a naive way: for the top token on the stack and
the first token in the buffer we add the number of additional
features corresponding to the dimensionality of the token
embedding (each value of the token embedding as a sep-
arate feature). The results can be found in Table 4. There
is a negligible increase in the parsing quality, but only if
100-dimensional token embeddings are used. We suspect
that due to its linearity the logistic regression model can-
not fully take advantage of the token embeddings.

MALT LAS UAS
macro | micro | macro | micro
BASELINE | 81.56% | 77.78% | 86.07% | 82.56%
+T100 81.65% | 77.97% | 86.08% | 82.64%
+7T300 80.75% | 76.95% | 85.43% | 81.88%

Table 4: 5-fold cross-validation of MaltParser integrated
with token embeddings estimated with Skip-gram and op-
timised with negative sampling.

As previously noted BIST parser uses the deep learning
model to predict the correct sequence of transitions (i.e. to
parse a sentence). Each word in the sentence gets its own
embedding which corresponds to the hidden state of bil.-
STM. The embedding of a word corresponds to the con-
catenation of the vectors of the token and the part-of-
speech tag of this word. By default both embeddings are
trained from scratch during the parser training. However,
it is also possible to apply external embeddings. We test
whether augmenting BIST parser with the pre-trained to-
ken, lemma, or character n-gram embeddings increases its
accuracy. Results of the experiment are in Table 5.

BIST LAS UAS
macro micro | macro micro
Tintern | 83.01% | 79.70% | 89.07% | 85.95%
+T100 85.70% | 82.68% | 90.29% | 87.52%
+T300 85.52% | 82.46% | 90.09% | 87.30%
Lintern | 82.94% | 79.85% | 89.07% | 86.06%
+L100 84.24% | 81.27% | 89.64% | 86.78%
+L300 84.23% | 81.16% | 89.54% | 86.64%
+S100 85.48% | 82.48% | 90.07% | 87.25%
+S300 85.21% | 82.24% | 89.72% | 86.93%

Table 5: 5-fold cross-validation of BIST parser with inter-
nal token embeddings (7;ytern), 100- or 300-dimensional
external token embeddings (7100, 7300), internal lemma
embeddings (Lintern), external lemma embeddings (L100,
L300), and external character n-gram embeddings (S1oo,
S300). All external vectors are estimated with Skip-gram
and optimised with negative sampling.

According to the results, external embeddings increase
the accuracy of BIST parser. Similarly as for MaltParser,
the best results are achieved with 100-dimensional token
embeddings, however the improvement is now much more
apparent. Even if the results of BIST parsers with internal
token and lemma embeddings are comparable, the results
of the parser with external lemma embeddings are con-
sistently lower than the results of the parser with the to-

ken embeddings. Finally, BIST parser integrated with the
character n-gram embeddings performs slightly worse than
the parser enhanced with the token embeddings.

Feature embeddings estimated with two methods
(CBOW and Skip-gram) and two optimisation techniques
(hierarchical softmax and negative samplings) are tested
in this experiment. Due to lack of space, we cannot pro-
vide all results. We therefore reported only results of BIST
parser integrated with external 100-dimensional token em-
beddings (see Table 6). The best performing BIST parser
is enhanced with token embeddings estimated with Skip-
gram method and optimised with negative sampling.

BIST LAS UAS

+T100 macro | micro | macro | micro
(cbow-ns) | 85.57% | 82.49% | 90.18% | 87.36%
(cbow-hs) | 85.45% | 82.38% | 90.02% | 87.21%
(skipg-ns) | 85.70% | 82.68% | 90.29% | 87.52%
(skipg-hs) | 85.25% | 82.18% | 89.93% | 87.14%

Table 6: 5-fold cross-validation of BIST parser with ex-
ternal 100-dimensional token embeddings estimated with
CBOW (cbow) or Skip-gram (skipg), and optimised with
negative sampling (ns) or hierarchical softmax (hs).

6. Conclusions

Methods of evaluating feature embeddings intrinsically
have recently been criticised by the NLP community, e.g.
because of the uncertain indication of the impact of em-
beddings on downstream applications. The intrinsic evalu-
ation is undoubtedly appropriate for synonymy and anal-
ogy recognition. However, it does not provide clues for
other NLP tasks, such as morphosyntactic disambiguation
and dependency parsing, which to a lesser extent rely on
synonymy and analogy recognition. For these tasks the ex-
trinsic evaluation seems to be reasonably informative.

Using external token embeddings in morphosyntactic
disambiguation task brings about a substantial gain in ac-
curacy (improvement by about 4 pp), resulting in error re-
duction up to 43%. However, the choice of the most ap-
propriate token embedding is a secondary issue, because
embeddings of different lengths estimated with different
training methods and optimisation techniques have a com-
parable impact on the task. Similarly, external feature em-
beddings (especially token embeddings) play an impor-
tant role in dependency parsing. Even though BIST parser
augmented with 100-dimensional token embeddings esti-
mated with Skip-gram method and optimised with nega-
tive sampling outperforms parsers with other external em-
beddings, the differences are actually negligible. Finally,
external lemma embeddings are useless for morphosyntac-
tic disambiguation and less useful for dependency parsing
than external token embeddings.

Acknowledgments The presented research was sup-

ported by SONATA 8 grant no 2014/15/D/HS2/03486 from
the National Science Centre Poland.

7. References

Andor, D., C. Alberti, D. Weiss, A. Severyn, A. Presta,
K. Ganchey, S. Petrov, and M. Collins, 2016. Globally Nor-

424

malized Transition-Based Neural Networks. In Proceed-
ings of ACL 2016.

Bojanowski, P., E. Grave, A. Joulin, and T. Mikolov, 2016.
Enriching Word Vectors with Subword Information. arXiv
preprint arXiv:1607.04606.

Chen, D. and C. Manning, 2014. A Fast and Accurate De-
pendency Parser using Neural Networks. In Proceedings
of EMNLP 2014.

Chiu, B., A. Korhonen, and Sampo S. Pyysalo, 2016. Intrin-
sic Evaluation of Word Vectors Fails to Predict Extrinsic
Performance. In Proceedings of RepEval 2016.

Drozd, A., A. Gladkova, and S. Matsuoka, 2016. Word
Embeddings, Analogies, and Machine Learning: Beyond
King—Man+Woman=Queen. 1In Proceedings of COL-
ING 2016.

Faruqui, M., Y. Tsvetkov, P. Rastogi, and C. Dyer, 2016.
Problems With Evaluation of Word Embeddings Using
Word Similarity Tasks. In Proceedings of RepEval 2016.

Finkelstein, L., E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan,
G. Wolfman, and E. Ruppin, 2002. Placing Search in Con-
text: The Concept Revisited. ACM Transactions on Infor-
mation Systems, 20(1):116—131.

Hill, F., R. Reichart, and A. Korhonen, 2015. SimLex-999:
Evaluating Semantic Models With (Genuine) Similarity
Estimation. Computational Linguistics, 41(4):665-695.

Iyyer, M., V. Manjunatha, J. Boyd-Graber, and H. Daumé
111, 2015. Deep Unordered Composition Rivals Syntactic
Methods for Text Classification. In Proceedings of ACL-
IJCNLP 2015.

Kiperwasser, E. and Y. Goldberg, 2016. Simple and Accu-
rate Dependency Parsing Using Bidirectional LSTM Fea-
ture Representations. Transactions of the Association for
Computational Linguistics, 4:313-327.

Kobylinski, £.. and W. Kieras, 2016. Part of speech tagging
for Polish: State of the art and future perspectives. In Pro-
ceedings of CICLing 2016.

Krasnowska-Kiera$, K., 2017. Morphosyntactic disambigua-
tion for Polish with bi-LSTM neural networks. In Proceed-
ings of LTC’17.

Leviant, I. and R. Reichart, 2015. Separated by an Un-
common Language: Towards Judgment Language In-
formed Vector Space Modeling. CoRR, abs/1508.00106.

Linzen, T., 2016. Issues in evaluating semantic spaces using
word analogies. In Proceedings of RepEval 2016.

Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
2013a. Distributed Representations of Words and Phrases
and their Compositionality. In Proceedings of NISP 2013.

Mikolov, T., W. Yih, and G. Zweig, 2013b. Linguistic Regu-
larities in Continuous Space Word Representations. In Pro-
ceedings of NAACL HLT 2013.

Mykowiecka, A., M. Marciniak, and P. Rychlik, 2017. Test-
ing word embeddings for Polish. Cognitive Studies, (17).
Nivre, J., J. Hall, and J. Nilsson, 2006. MaltParser: A Data-
Driven Parser-Generator for Dependency Parsing. In Pro-

ceedings of LREC 2006.

Ogrodniczuk, M., L. Kobyliriski, and A. Wawer, 2017. Re-
sults of the PolEval 2017 Competition: Part-of-Speech Tag-
ging and Sentiment Analysis Shared Tasks. In Proceedings
of LTC’17.

Pennington, J., R. Socher, and C. Manning, 2014. GloVe:
Global Vectors for Word Representation. In Proceedings
of EMNLP 2014.

Przepiérkowski, A., M. Banko, R. L. Goérski, and
B. Lewandowska-Tomaszczyk (eds.), 2012. Naro-
dowy Korpus Jezyka Polskiego. Warsaw: Wydawnictwo

. Naukowe PWN.

Rehtifek, R. and P. Sojka, 2010. Software Framework for
Topic Modelling with Large Corpora. In Proceedings of
the Workshop on New Challenges for NLP Frameworks.

Vulié, 1., N. Mrksié, R. Reichart, D. O Séaghdha, S. Young,
and A. Korhonen, 2017. Morph-fitting: Fine-Tuning Word
Vector Spaces with Simple Language-Specific Rules. In
Proceedings of ACL 2017.

Wréblewska, A., 2014. Polish Dependency Parser Trained on
an Automatically Induced Dependency Bank. Ph.D. disser-
tation, ICS PAS, Warsaw.

