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Abstract
This paper presents a Part-Of-Speech (POS) tagger for English tweets which uses an end-to-end Deep Neural Networks (DNN) model
requiring no feature engineering or data pre-processing. Our neural model benefits from both word and character level representations.
Character level word representations are learned during the training of the model through a Convolutional Neural Network (CNN). For
word level representations, we concatenate several embeddings to accurately capture the word semantics. We evaluate our model on two
publicly available small data sets of English tweets. We propose an approach to handle the problem of annotated data availability and
demonstrate that transfer learning improves the performance of POS tagging.

1.

Part-of-Speech (POS) tagging is one of the basic
and indispensable tasks in Natural Language Processing
(NLP). Most traditional high performance POS tagging
models are linear statistical models. These models rely
heavily on hand-crafted features and task specific exter-
nal resources. However, such task-specific knowledge is
costly to develop and makes POS tagging models difficult
to adapt to new tasks or domains.

The past few years have witnessed the great success
of the application of deep neural networks in end-to-end
manner for Natural Language Processing (NLP). Most of
proposed neural models for sequence labeling, including
POS tagging use Recurrent Neural Networks (RNNs) and
its variants (Long Short-Term Memory networks - LSTMs
and Gated Recurrent Units - GRUSs), and Covolutionnal
Neural Networks (CNNs) for character-level representa-
tions. Indeed, previous studies (Jozefowicz et al., 2016)
have shown that CNNs represent an effective approach
to extract morphological information (root, prefix, suffix,
etc.) from words and encode it into neural representa-
tions, especially for morphological rich texts like Twitter
data (Chiu and Nichols, 2015; Ma and Hovy, 2016).

In fact, the current challenge is not POS tagging of
well-structured texts with huge amounts of labeled cor-
pora, since the actual accuracy of POS taggers trained from
treebanks in the newswire domain, such as the Wall Street
Journal (WSJ) corpus of the Penn Treebank (Marcus et al.,
1993) is close to human level, thanks to deep learning tech-
niques trained on large annotated data-sets (97.64% accu-
racy by (Choi, 2016)). However, achieving human-level
accuracy for POS tagging on user generated texts, espe-
cially conversational texts (Twitter, Web blogs, SMS texts,
etc.) is much harder. This is due to the conversational na-
ture of the text, the lack of conventional orthography, the
noise, linguistic errors and the idiosyncratic style. Also,
Twitter poses an additional issue by imposing 140 charac-
ters limit for each Tweet.

The application of models purely trained on well-
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structured corpora such as WSJ falls to work on noisy text
such as twitter. As illustrated in (Gimpel et al., 2011),
the accuracy of the Stanford POS tagger (Toutanova et al.,
2003) trained on WSJ falls from 97% on standard English
to 85% accuracy on Twitter. The main reason for this
drop in accuracy is that Twitter contains lot of Out-Of-
Vocabulary (OOV) words compared to standard text. In
addition, NLP’s deep neural network (DNN) models with
high performance often require huge volumes of annotated
data to produce powerful models and prevent over-fitting.
Hence, the construction of a DNN model for Twitter data
needs huge amounts of annotated tweets with POS labels
to produce high performance, however, available data-sets
are very small.

There are two principal state-of-the-art works for En-
glish Tweets POS tagging, both based on hand-crafted fea-
tures. Derczynski et al., 2013) used a small data-set of
annotated tweets. The model is based on hidden Markov
Models and a set of normalization rules, external dictio-
naries and lexical features. They achieve an accuracy of
88.69%. Furthermore, they achieve 90.54% token accu-
racy using supplementary 1.5M training tokens annotated
by vote-constrained bootstrapping. Owoputi et al., 2013)
used another small data-set of annotated tweets. The model
is based on First-order maximum entropy Markov model
(MEMM), engineered features like brown clustering and
lexical features. They achieve an accuracy of 93.2%.

Recently a Neural Network model (TPANN) for En-
glish Tweets POS tagging was proposed by Gui et al.,
2017), they used Adversarial Neural Networks to lever-
age huge amounts of unlabeled Tweets and labeled out-of-
domain data (WSJ) !. TPANN achieves high performances
compared to the former works. However, the model pro-
posed in (Gui et al., 2017) requires that labeled in-domain-
data and labeled out-of-domain data share the same tag-
set (a mapping is necessary in case of tag-sets mismatch).
Which makes the model difficult to adapt to new tasks or

'The adversarial discriminator helps to find an invariant rep-
resentation of in-domain and out-of-domain data.



new domains, where the mapping between tag-sets is not
possible.

In the past few years transfer learning has been suc-
cessfully applied in neural speech processing and machine
translation (Zoph et al., 2016). It consists in perform-
ing a task on a low-resource target data-set using fea-
tures learned from a high-resource source data-set (Pan and
Yang, 2010). Two studies have been recently performed on
transfer learning for DNN based models in sequence label-
ing: (Yang et al., 2017) and (Lee et al., 2017) for named
entity recognition.

In this work, we use transfer learning in a simple DNN
model for POS tagging of English Tweets. In order to han-
dle the constraints of the high frequency of OOV words,
the very limited size of the POS labeled in-domain data
and the absence of parallel corpora between English tweets
and the standard English texts, we propose:

e Anend-to-end and feature-engineering-free deep neu-
ral model for English Tweets POS tagging, with a
small annotated corpus.

To combine different input representations in order to
handle OOV words issue.

To exploit huge amounts of available out-of-domain
annotated corpora using transfer learning, we demon-
strate that transferring a DNN model trained on out-
of-domain data (Ex. Standard English) to another
small data set (English tweets) improves the state-of-
the-art results despite domain and tag-sets mismatch.

The remainder of the paper is organized as follows.
We first describe in section 2 our neural model, then, we
present in section 3 the experimental setup. In Section 4,
we report and discuss the results. Finally, the conclusion
and future work are presented in section 5.

2. System description

Our model is based on deep hierarchical Gated Recur-
rent Units (GRU), a type of Recurrent Neural Networks
(RNN), and utilizes both word-level and character-level
embeddings. Transfer learning is applied in order to lever-
age out-of-domain data even if source and target data sets
do not share the same tag-set (more details about Transfer
learning approach are reported in the section 3.4.).

2.1.

Our neural network model comprises three major com-
ponents, Figure 1 shows an overview of the architecture.

Deep Neural Network model

2.1.1. Inputs Representation

In order to preserve both semantic and syntactic infor-
mation of words, we join character-level and word-level
embeddings to get a combined embedding. Hence, each
word in the input tweet is represented by a combination of
two vectors:

1. A vector representation of individual words: Instead
of using a single pre-trained word embedding model
as the final word-level representation, we initialize
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word-level embedding with a concatenation of dif-
ferent pretrained words embedding (Section 3.3.) to
accurately capture the word’s semantics. Indeed, our
experiments show that this method can produce better
performances (Section 4.2.1.).

. Character-level word embedding: In order to deal
with OOV words, we represent each word with a vec-
tor that contains morphological information, gener-
ated using a Convolutional Neural Network (CNN)
(the same architecture used by Ma and Hovy, 2016),
except that we add an embedding layer before the
convolutional layer).

2.1.2. Gated Recurrent Units Layer

Word vectors (the combination between character level
embedding and word level embedding CNN) are fed into a
100 dimension GRU layer.

2.1.3. Fully-connected Layer and Softmax Layer

The output of the GRU at each time-step is fed through
a 80 dimension linear (fully connected) layer followed by
a softmax layer to decode it into a distribution of log-
probabilities for each POS tag.

Combined input representation
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Figure 1: Overall system design. First, the system embeds
each word of the tweet into two representations: character
level representation using a CNN network and a word level
representation by combining different pre-trained models.
Then, the two representations are combined and fed into a
GRU layer, the resulting vector is fed to a fully connected
layer and finally a softmax layer to perform POS tagging.

3. Experimentation
3.1. Data sets

For experiments, we use the two POS-labeled Tweets
data-sets that are currently publicly available:

e The T-PoS corpus of 787 hand-annotated English
tweets (15K tokens) introduced by (Ritter et al.,
2011), which uses the same tag-set as Penn Tree-bank
(PTB) tag-set (Marcus et al., 1993), plus four Twitter
special tags: URL for URLs, HT for hashtags, USR
for username mentions and RT for retweet signifier
(40 tags in total).

The ARK corpus was published on two parts, the
first, Oct27 of 1827 hand-annotated English tweets
(39K tokens), published in (Gimpel et al., 2011)
and the second, Daily547 of 547 tweets published
in (Owoputi et al., 2013), using a novel and coarse



grained tag-set (25 tags). For example, its V tag cor-
responds to any verb, conflating PTB’s VB, VBD,
VBG, VBN, VBP, VBZ, and MD tags.

Nevertheless, huge amounts of near-genre annotated
corpora are also available:

e Standard English: The WSJ part of the PTB annotated
with part-of-speech tags. The PTB tag-set includes
36 main tags and an additional 12 tags covering items
such as punctuation.

Tweet-like genre data: The NPS IRC Chat Corpus
(annotated with part-of-speech tags) (Forsythand and
Martell, 2007) consists of 10,567 posts gathered from
various online chat services.

3.2. Baselines

We compare our system’s performances to three mod-
els:

e Derczynski et al., 2013) used T-PoS data, by splitting
it 70:15:15 into training, development and evaluation
sets named T-train, T-dev and T-eval. For training,
they used T-train (2.3K tokens) and also SOK tokens
from the Wall Street Journal part of the Penn Tree-
bank and 32K tokens from the NPS IRC corpus. We
use the same data splits for our experiments on T-
POS.

Owoputi et al., 2013) used the Ark corpus oct27 as
training and development data data and Daily547 as
an evaluation data. We split the oct27 data set into
training-set and development-set (70:30) (data splits
portions are not mentioned) and Daily547 as valida-
tion set.

Gui et al., 2017) performed experiments on both T-
POS and ARK data-sets. For training, they leverage
1,17M token from unlabeled Tweets and more than
1,17M from labeled WSJ. In order to use WSJ labeled
data in experiments on ARK data set, they performed
a mapping between PTB and ARK tag-sets.

3.3. Word embedding

We experimented an initialization of words embedding
with different sets of published pre-trained vectors. Ini-
tializations are computed by a look-up table of each of
pre-trained model, all words are lower-cased before pass-
ing through the look up table for converting to their corre-
sponding vectors.

1. Word2vec (Mikolov et al., 2013), which learns word
vector representations by attempting to predict con-
text words around an input word, trained on part of
Google News dataset (about 100 billion words). The
model contains 300-dimensional vectors for 3 million
words.?

2. FastText (Bojanowski et al., 2016), which is very sim-
ilar to Word2vec (Using SkipGram) but it also uses

2code.google.com/archive/p/word2vec/
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sub-word information in the prediction model. Fast-
Text Facebook embedding is trained on Wikipedia for
294 languages and contains 300 dimensional words
vectors.

Glove (Pennington et al., 2014) is a model based on
global word-word co-occurrence statistics, we experi-
mented two Glove’s models, the first, which we name
“Glove”, trained on 42 billions from a web crowling,
contains 300 dimensional vectors for 1.9M words.
And the second, which we name “Glove-Twitter”,
trained on 2 billion tweets, contains 200 vectors for
1.2M words.*

We have also done experiments with randomly initialized
embeddings of 300 dimensions.

3.4. Transfer learning

In our case transfer learning helps to leverage the vast
amounts of labeled data we have in structured English
(WSJ) to improve English tweets POS tagging. Further-
more, we use it to cope with the problem of the mismatch
between the tag-sets of available POS-labeled Tweets.

Since the two available data sets (T-POS and Ark) do
not share the same tag-set, we perform experiments sep-
arately. The first experiment was to evaluate the per-
formance of the DNN trained on the available annotated
tweets (T-train for T-POS and oct27 for ARK) without
any extra knowledge. Then, for experiments on T-POS,
we augment in-domain data with out-of-domain annotated
data (WSJ + IRC) and train the DNN jointly on T-train,
WSJ and IRCS.

Finally, we use transfer learning approach by training
the parent model on a high-resource out-of-domain data,
then use the parameters (weights) of this model to initialize
the child model which is further trained (fine-tuned) on a
low-resource in-domain-data (Tweets), rather than starting
from a random position. For experiments on ARK, the par-
ent model is trained on T-POS+WSJ+IRC, and trained on
WSIJ+IRC for experiments on T-POS (We show the most
effective layers for transfer for both data-sets in 4.2.).

4. Results and discussion

In this section, we firstly report best performances of
our model compared to the baselines described in 3.2.
Then, we show the importance of transfer learning and pre-
trained word embedding.

4.1.

In table 1, we show our system’s performances com-
pared to state-of-the-art results. The first part of the table
shows (Derczynski et al., 2013), (Owoputi et al., 2013)
and (Gui et al., 2017) results. The second part shows the
results of our model trained only on in-domain-data (T-
train for T-POS and oct27 for ARK) and then results by

Performances Evaluation

3 github.com/facebookresearch/fastText/blob/master/pretrained-
vectors.md

“nlp.stanford.edu/projects/glove/

SFor ARK data-set, it is not possible to perform a joint-
training with out-of-domain data because of the tag-set mismatch



| Data sets | T-POS (T-eval) | ARK (Daily547) |

Methods Token acc. (%) | Sentence acc. (%) | Token acc. (%)
(DerczynskKi et al., 2013) 88.69 20.34 -
(Owoputi et al., 2013) 90.40 - 93.20

(Gui et al., 2017) 90.92 - 92.8
In-domain-data training 88.13 21.03 90.59
Jointly training 89.01 22.04 -
Transfer learning 90.46 23.01 91.66

Table 1: Performances of different methods on T-eval (Validation set of T-POS) and Daily547 (Validation set of ARK).
“In-domain-data training” refers to training our DNN model only on Twitter data. “Jointly training” refers to the model
trained jointly on T-train, WSJ and IRC for T-POS experiments. “Transfer learning” refers to the model trained firstly on
(WSJ + IRC) and then fine-tuned on T-Train for T-POS experiments, and on (WSJ + IRC + T-POS) and then fine-tuned on

oct27 for ARK experiments.

augmenting training set with WSJ and IRC data for exper-
iments on T-POS (same training set as (Derczynski et al.,
2013))°. The third part shows the results using transfer
learning.

Comparing the two methods of using out-of-domain
data, we can observe that transfer learning method
can achieve better performance than the jointly training
method (almost 1.3% higher token-accuracy for T-POS).

Our transfer learning method outperforms state-of-the-

art approaches (Derczynski et al., 2013) and (Owoputi
et al., 2013) on T-POS experiments, however it performs
worse than (Owoputi et al., 2013) on ARK-data set. The
reason is that our model is end-to-end and the most of er-
rors in our system were caused by hashtags (Our model
accuracy on hashtags: 45%) and proper nouns (PN) (Our
model accuracy on PN: 55%) which was resolved in
(Owoputi et al., 2013) by adding external knowledge (a
list of named entities) and rules to detect hashtags.
We can observe that (Gui et al., 2017) achieves better
performances than our model in both data sets, an ef-
fective model (Adversarial Neural Network) was used in
their work with huge amounts of unlabelled in-domain-
data (More than 1.17 millions token) and 1 million token
from WSJ. In addition, they used regular expressions to
perfectly tag Twitter-specific tags: retweets, @usernames,
hashtags, and urls, contrariwise our model which is end-
to-end and do not use hand-crafted rules.

4.2. Transfer Learning Performances

In this section, we analyze the importance of each layer
of our model in the transfer learning. Instead of trans-
ferring all layers, we experiment with transferring differ-
ent combinations of layers. The objective is to understand
which layers are the most transferable. It’s well known that
the lowest layers of the DNN tend to represent domain-
independent features, whereas the topmost layers are more
domain-specific (Mou et al., 2016). So, we tried to trans-
fer the features starting from the bottom-most layer up to
the topmost layer (Except last softmax layer), adding one
layer at a step.

Table 2 shows accuracy on T-POS data-set after transfer-
ring the features learned at each layer of the model trained

®For ARK data-set, it is not possible to perform a joint-
training with out-of-domain data because of the tag-set mismatch.
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Transferred layer | Acc. on T-POS (%) | Acc. on ARK (%)
Char-emb. (CNN) 89.66 90.96
‘Word-emb. 90.01 91.34
GRU 90.39 91.66
Fully-connected 90.46 91.00

Table 2: Effects of transferring different neural layers.

on WSJ + IRC and also accuracy on ARK data-set after
transferring the features learned at each layer of the model
trained on T-train + WSJ + IRC (We fine tune layers fea-
tures during the training).

We can observe that transferring embedding and GRU
layers improves significantly the accuracy on both data-
sets despite the difference on the-tag set in the case of ARK
data-set. However, transferring the fully connected layer
improves the performance for T-POS data-set but degrades
it for ARK data-set. A possible reason, is that in the fully
connected layer, the model started to learn features that
depend on the tag-set.

4.2.1. Pre-trained word level embedding
performances

In order to test the importance of pretrained word em-
beddings, we perform experiments using different word
embeddings (3.3.) to initialize words vectors, as well as a
random initialization method. Table 3 shows our model’s
accuracy on T-POS by initializing words embedddings
with different pretrained words vectors as well as the
random initialization. Two different settings are experi-
mented. In the first “Fine-tune”, weights are updated dur-
ing training. In the second “Freeze”, embedding weights
are not updated. We can observe that the GloVe unsuper-
vised vectors give the best score on both data-sets, and
Word2vec gives the worse scores. One possible reason is
that Word2Vec is not as good as the other embeddings be-
cause of vocabulary mismatch (as Word2Vec was trained
on news data).

According to the results in table 3, models using pre-
trained word embeddings obtain a significant improvement
opposed to the ones using random embeddings. We also
observe that fine tuning embedding vectors increases the
performance, often significantly. In addition, we observe
that combining the four embeddings vectors obtained with



Initialization method Freeze (%) | Fine-tune (%)
Random - 76
Word2vec (1) 74 85
FastText (2) 82.2 85.7
Glove (3) 86 86.5
Glove-twitter (4) 82.6 85.5
Concatenation (1,2,3,4) 84.7 89.02

Table 3: Token accuracy of our model (trained jointly on
T-train + WSJ + IRC) on T-POS data set with the initial-
ization and the freezing or fine-tuning of word level em-
bedding layer with different word embedding pre-trained
models.

initialization from four pre-trained models gives the best
performance of our model.

5. Conclusion

In this paper, we proposed a truly end-to-end Deep
Neural Network (DNN) model for English Tweets POS
tagging, with the problem of the unavailability of anno-
tated data. We showed that word representations are cru-
cially important for the success of DNN models. We also
explored transfer learning to improve Twitter POS tagging
by handling the problem of tweets annotated data availabil-
ity and differences on tag-sets between different available
corpora. This study offers several open issues for future
work. First, we plan to perform more experiments on the
transferability of different layers of DNN models. The sec-
ond perspective is to study how the similarity between the
source and target languages could influence the success of
transfer learning.
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